

## QUIC Protocol Overview for Enterprises

With Packet Analysis

Bill.Alderson@Cogent.Management



ketman007

Wireshark Developer and User Conference • San Diego, CA • June 10-15

Course PDF https://Cogent.Management/SharkFestQUIC



## **QUIC Protocol Is Rapidly Replacing TCP!**

**Every Major Client Web Browser** Chrome – Edge – Safari – Mozilla Most Social Media Apps 90%+ **Google – Facebook Apple – Microsoft Server 2022+ CDN' s Cloudflare - Fastly** 

#### SharkFest 2023

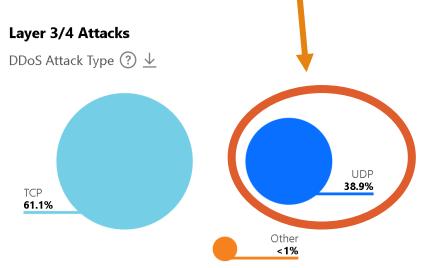
How QUIC Works And What Are The Security Concerns?

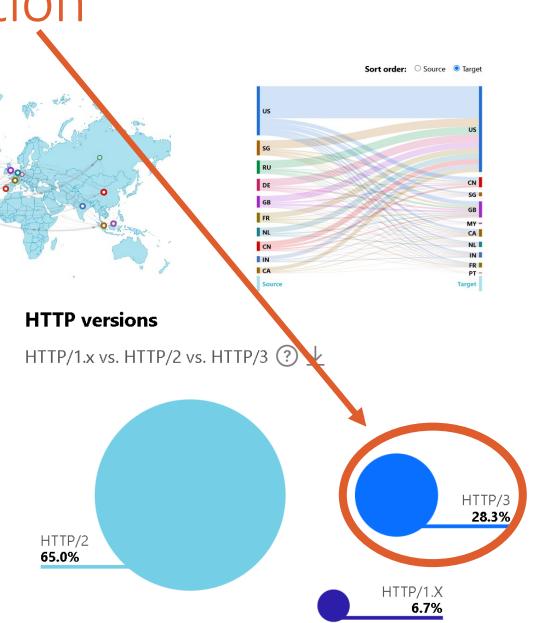
Why QUIC is Faster? Show You How To Perform "Packet Based Analysis"

**Distillation of 1,000 IETF rfc-9000 and Related Standards Pages** 

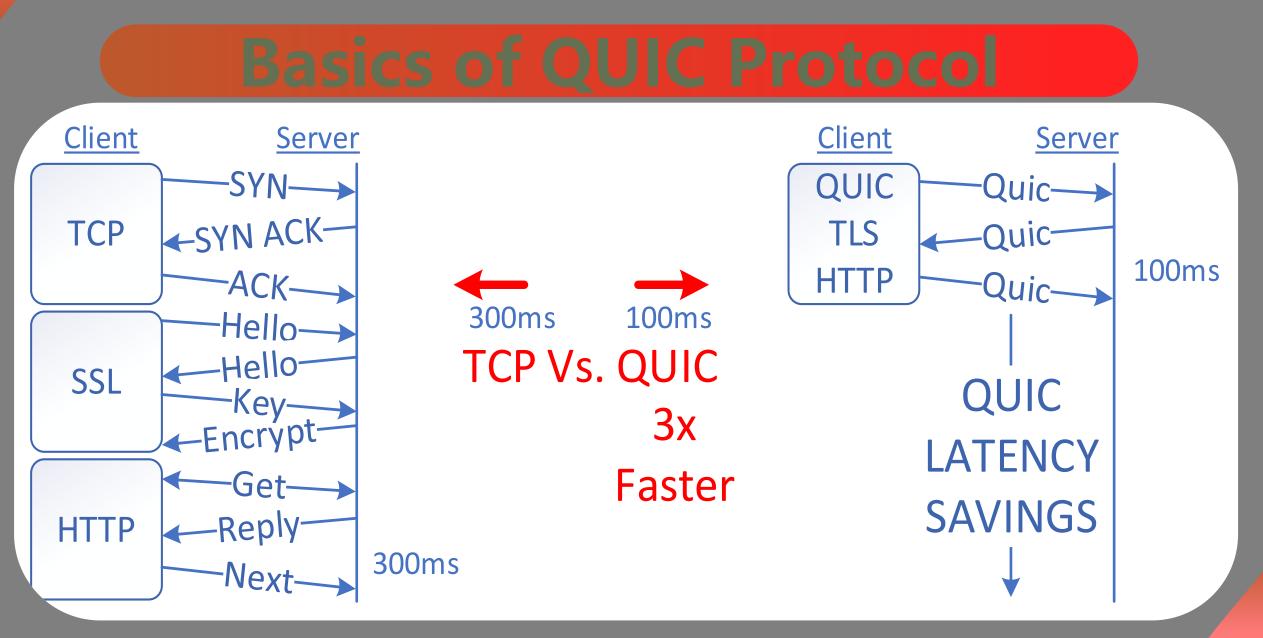
Why Does It Lower Firewall Sessions 20 to 1 vs TCP?

How to Implement QUIC on Your App or Site - Fast!


## **QUIC Protocol Adoption**


Application layer attack activity Top 10 attacks by target or source location <sup>(2)</sup>  $\pm$ 




Security & Attacks

Insight into network and application layer at ack traffic











# Firewall Vendors Tell Enterprises "DENY" QUIC

Firewall Vendors that recommend Blocking QUIC UDP Port 443 in Enterprise Networks

Cisco PaloAlto Networks CheckPoint Fortinet

Each vendor provides specific instructions to block QUIC



GotQuic?

An "Attractive Nuisance" Until Enterprise Firewall Improvements Secure Its Use

 2012 accidentally discovered... by Jim Roskind at Google, now AWS

Google, YouTube, Gmail, Facebook, Microsoft
 Uber and Cloudflare <u>already use QUIC!</u>

 Distant or rural users receive the biggest performance gain.

### QUIC Initial Connect – some headers exposed

| 📕 gquic.tag.sni | i == "r1sn-q4f7sn7r | googlevideo.com"                       |           |          |                          |           |                      |                               |                   |                       |              |                            |                     |           |
|-----------------|---------------------|----------------------------------------|-----------|----------|--------------------------|-----------|----------------------|-------------------------------|-------------------|-----------------------|--------------|----------------------------|---------------------|-----------|
| No. Time        | Source              | Destination                            | Protocol  | Length ( | QLen Q                   | PNum Cur  | mBytes Info          | Server Name Indication        | QVer Proof demand | Idle connection state | QMax in QEst | nitRTT Initial session/con | r Initial stream fk | QPadLer ( |
| 1 0.000000      | 172.20.1.29         | 173.194.141.247                        | QUIC      | 1392     | 1350                     | 1         | 1392 Client Hello    | r1sn-q4f7sn7r.googlevideo.com | Q858 X589         | 30 (0x0000001e)       | 100          | 23149 1572864              | 6291456             | 800       |
| 5 0.029508      | 8 172.20.1.29       | 173.194.141.247                        | QUIC      | 1392     | 1350                     | 4         | 2784 Client Hello    | r1sn-q4f7sn7r.googlevideo.com | Q858 X589         | 30 (0x0000001e)       | 100          | 23149 1572864              | 6291456             | 731       |
| ¢               | *                   |                                        |           |          |                          |           |                      |                               | 1 1               | 1                     | 1            | 1                          | 1                   |           |
|                 | Tag/value: 7231     | d2d2d736e2d7134663                     | 37736e377 | 722e676  | f6f676c                  | 65766964  | 656f2e636f6d         |                               |                   |                       |              |                            |                     |           |
|                 | Server Name Ind     | ication: r1sn-q4                       | f7sn7r.   | googlev  | ideo.com                 |           |                      |                               |                   |                       |              |                            |                     |           |
| ✓ Tag           | /value: STK (So     | unce Address Token                     | ) (1=54)  |          |                          |           |                      |                               |                   |                       |              |                            |                     |           |
|                 | Tag Type: STK (     | iource Address Toke                    | en)       |          |                          |           |                      |                               |                   |                       |              |                            |                     |           |
|                 | Tag offset end:     | 86                                     |           |          |                          |           |                      |                               |                   |                       |              |                            |                     |           |
|                 | [Tag length: 54     | )                                      |           |          |                          |           |                      |                               |                   |                       |              |                            |                     |           |
|                 | Tag/value: c9e2     | l1c10f97814d29305ct                    | da5453ft  | f1d23ce  | ce42648                  | 9de66b374 | 4ba91c024fca14ae8a4e |                               |                   |                       |              |                            |                     |           |
| 0050 42 01      | 00 00 53 46 43      | 57 46 01 00 00 72                      | 31 2d 2   | d 8      | · SFCW F                 | ···r1     | There a              | re a few things a fire        | wall can y        | alidate in t          | he initi     | al OI IIC con              | nection             |           |
|                 |                     | 37 73 6e 37 72 2e                      |           |          | 1-q4f7 st                |           | I IICI C d           | ire a rew timigs a me         | wall Call A       | anuate in t           | ie iniu      |                            | necuon              |           |
|                 |                     | 6f 2e 63 6f 6d c9                      |           |          |                          | com       |                      |                               |                   |                       |              |                            |                     |           |
|                 |                     | bd a5 45 3f f1 d2                      |           |          | M)0\I                    |           |                      |                               |                   |                       |              |                            |                     |           |
|                 |                     | a9 1c 02 4f ca 14<br>64 1f fc e0 00 ec |           |          | • k7K • •<br>n   • • d • |           | Thore als            | a a faur shinas sha fi        | nouvell een       | hom cost fre          |              | notion roa                 |                     |           |
|                 |                     | e8 81 60 92 92 1a                      |           |          | 050                      |           | i nere als           | so a few things the fi        | rewall can        | narvest m             | om con       | nection req                | uests ro            | )r        |
|                 |                     | b9 5a 5d e9 b9 a2                      |           |          | z                        |           |                      | an an Im a dallation an Ab    |                   | and and a             |              |                            |                     |           |
| 0130 84 34      | 48 fa 3b 11 66      | 0d 37 34 e4 85 b9                      | 28 74 6   |          |                          | 4 }0      | retere               | ence in addition to th        | ie ir addre       | esses only a          | i vendo      | r can imple                | ment.               |           |

C ···· AE SGChrome

/86.0.42 40.198 W

indows N T 10.0;

win64; x 64 ... k ...

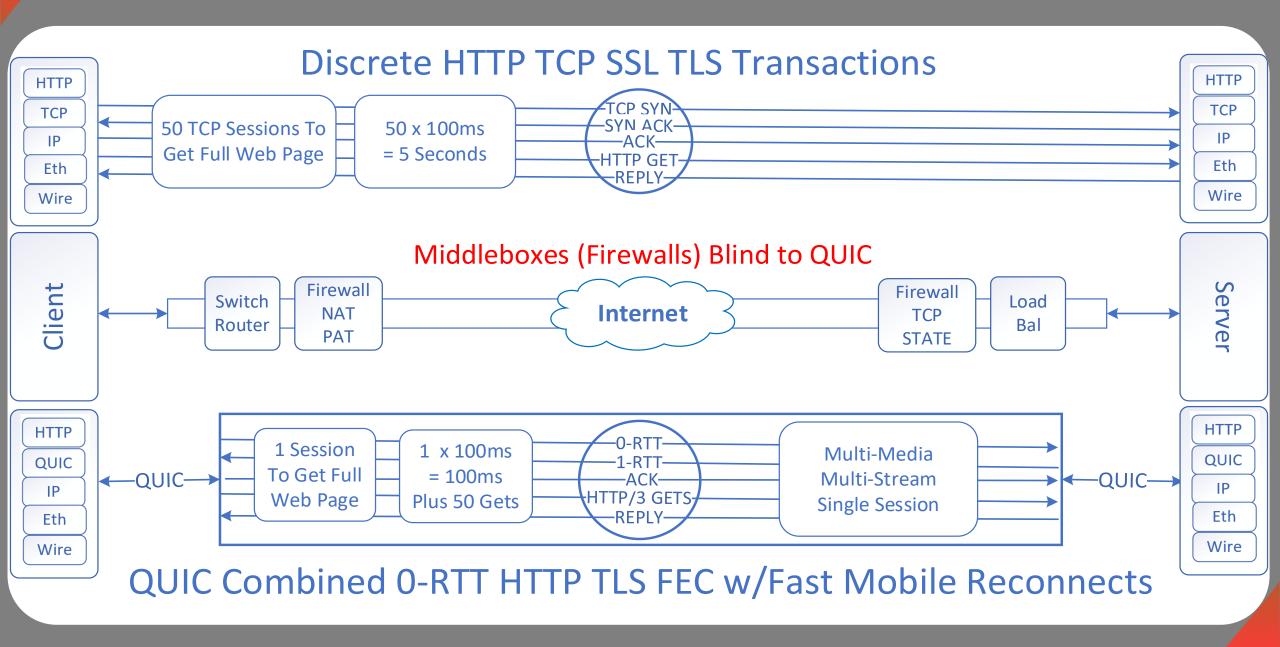
34 30 2e 31 39 38 20 57

53 47 43 68

36

54 20 31 30 2e

30 2e 34 32


77 73 20 4e

41 45

A powerful firewall can build custom filters with the help of Wireshark traces



#### Why Middleboxes (Firewalls) Blind to QUIC?



#### QUIC vs. TCP Full Page Packet by Packet Performance Analysis

|                         |                                        |            |                    |               | -                                      |                    |       |                            |                |                         |                |            |             |                                                |               |      |
|-------------------------|----------------------------------------|------------|--------------------|---------------|----------------------------------------|--------------------|-------|----------------------------|----------------|-------------------------|----------------|------------|-------------|------------------------------------------------|---------------|------|
| CE CE CE CETOUR Rey Lee | 9000                                   |            |                    |               |                                        |                    | ×     | CTUP I GRADAN              | proposi        |                         |                |            |             |                                                |               | 1    |
| File Built View G       | o Capture Analyze                      | Statistics | Telephony Wire     | dea Tuub Help |                                        |                    |       | Five Edit - Viv            | w Go Ceptory   | e Andywe Statist        | iss Teleph     | ony Wissle | s Tools H   | help:                                          |               |      |
| 🥂 🗏 近 🕸 📕 🕽             | े 🎗 🖸 🧣 🗟                              | 🖻 🖗 🛓      | <u>t 🔤 😑 🔍</u> (   | e, e, 11      |                                        |                    |       | 🥻 🗏 近 举                    | 1 🖸 🕺 🖉        | ٩ ↔ ↔ 😣 🤆               | š 🕹 🚍          | = 🤤 ର୍     | Q. 💷        |                                                |               |      |
| Mar)                    |                                        |            |                    |               |                                        | S 🗆                | * +   | (transe)                   |                |                         |                |            |             |                                                | - X 🔁 🖘       | •] + |
| No. Time Source         | Destination                            | Protocol   | Length QLen Q F    | PN.m CumCytes | dt                                     |                    | ^     | No. Time                   | Source         | Destingtion             | Pretocol       | Length TCR | en Oum Dyte | s Brito                                        |               | _    |
| 1 0.003. 172.28         | .1.29 215.58.193.                      | QUIC       | 1392 1350          | 1 1802        | lient Hello                            |                    |       | 1.8,660000                 | 172.28.1.29    | 184.16.124.95           | TCP            | 66         | 3           | 66 64741 - https(445) [5                       | WH] Seq-0 MI  |      |
| 2 0.031, 216.58         | 193. 172.28.1.29                       | QUIC       | 1392 1350          | 1 2784        | Rejection                              |                    | _     | 2 8,007053                 | 172.28.1.29    | 184,22.9.38             | TCP            | 66         | 8 1         | 32 64712 + https(445) (5                       | VN] Seque Mi  |      |
|                         | .193. 172.20.1.29                      |            | 1392 1350          |               | Anknown   Maillionnes                  | Facket             |       |                            | 104.16.124.96  |                         | TCP            | 66         |             | 90 https(443) = 64741  5                       |               |      |
|                         | .1.29 215.58.193.                      |            | 1302 1350          |               | lient Hello                            |                    |       |                            | 172.28.1.29    | 184.16.124.05           |                | 54         |             | 52 64741 → https(443) [A                       |               |      |
|                         | .1.79 215.58.193.                      |            | 516 474            |               | 8-RTT, DCTD-81569                      |                    |       |                            | 104.22.9.38    | 172.26.1.39             | TCP            | 66         |             | 18 https:(443) + 64742 [5                      |               |      |
|                         | .1.29 215.50.193.                      |            | 125 83             |               | B-RIT, DCID-815f?                      |                    |       |                            | 1/2.28.1.25    | 184,22,9,38             | TOP            | 54         |             | 72 64/42 + https(443) [A                       | CK] Seq=1 Ac  | 1    |
|                         | .1.29 215.58.193.                      |            | 129 87             |               | D-RTT, DCID=81bf9                      |                    |       |                            | 172.28.1.29    | 184.16.124.95           |                |            |             | 86 Client Hello                                |               |      |
|                         | .103., 172.28.1.20                     |            | 1302 1350          |               | RTT, SCID-815/9                        |                    |       |                            | 172.28.1.20    | 184.22.0.38             | TLSV1.2        |            |             | 41 Client Hello                                |               |      |
|                         | .1.29 215.58.193.                      |            | 75 33              |               |                                        | (KPE), DCID=81h    | 4°    |                            | 184.15.124.96  |                         | TCP            | 649        |             | 81 https(443) + 64741 [A                       | ex] seget Ar  |      |
|                         | .193. 1/2.20.1.29                      |            | 67 25              |               | Anolected Paylos                       |                    |       |                            | 101.16.124.90  |                         | 11591.2        |            |             | 15 Server Hello                                |               |      |
|                         | .193. 172.20.1.29                      |            | 1392 1330          |               | Protected Payloa:                      |                    |       |                            | 104.16.124.96  |                         | TL9V1.2        |            |             | 15 Certilicate, Server K                       |               |      |
|                         | .103. 172.28.1.20                      |            | 1302 1350          |               | Protected Poyloge                      |                    |       | 12 8.105062                |                | 184.16.124.95           |                | 54<br>147  |             | 69 64741 → https(445) [A                       |               |      |
|                         | .103. 172.28.1.20                      |            |                    |               | Protected Paylos                       |                    |       |                            |                | 184.16.124.95           | TISY1.2<br>TOP | 147        |             | 16 Client Key Eschange,                        |               |      |
|                         | .193. 1/2.28.1.29<br>.1.29 215.58.193. |            | 1392 1350<br>75 55 |               | Protected Paylos:                      | (KPE), DCID-S15    |       | 14 8.110913<br>15 8.115668 |                | 1/2.20.1.29 172.20.1.29 | TLSV1.2        |            |             | 76 https(443) → 64/42 [A<br>98 Server Hello    | cv1 266-1 90  | 1    |
|                         | .1.20 215.58.103.                      |            | 75 55              |               |                                        | (KPE), DCID-B15    |       | 15 8.115665                |                | 172.26.1.29             | TLSV1.2        |            |             | 16 Centificate, Server K                       | an Exchange   |      |
|                         | .193. 172.28.1.29                      |            | 1392 1358          |               | Protected Payload                      |                    | *:    | 17 8.115708                |                | 184.22.9.38             | TOP            | 54         |             | 78 64742 + https(443) [A                       |               |      |
|                         | .193. 172.28.1.29                      |            | 1392 1350          |               | Protected Payload                      |                    |       | 15 8,118119                |                | 184.22.9.38             | TU5V1-2        | 147        |             | 12 Client Key Exchange,                        |               |      |
|                         | .193. 172.28.1.29                      |            | 1392 1330          |               | Protected Payloa:<br>Protected Payloa: |                    |       |                            | 104.16.124.96  |                         | TCP            | 60         |             | 72 https(443) ~ 64741  A                       |               |      |
|                         | .198. 172.28.1.20                      |            | 1302 :1350         |               | Protected Paylog                       |                    |       |                            | 104.15.124.06  |                         | TLSV1.2        |            |             | 89 New Session Ticket, 6                       |               |      |
|                         | .1.29 215.58.193.                      |            | 75 33              |               |                                        | (KPE), DCID=815    | 41    | 21 8.158699                |                | 172.28.1.29             | TCP            | 60         |             | 19 https(443) + 64742 [A                       |               |      |
|                         | 1.29 215.50.193.                       |            | 0 33               |               |                                        | (RPE), DCID-815    |       | 22 8,158699                |                |                         | 11591.2        | 312        |             | 1 New Session Licket, C                        |               |      |
|                         | .103., 172.28.1.29                     |            | 1302 1359          |               | Protecter Paylogs                      |                    |       | 23 8,170505                |                | 184.22.0.38             | TLSV1.2        |            |             | 25 Application Data                            |               |      |
|                         | .103. 172.28.1.20                      |            | 1302 1350          |               | Protected Payload                      |                    |       | 14 8.103305                |                | 184.16.124.05           |                | 54         |             | 79 64741 - https(448) [A                       | CK1 Sec-174   | ,    |
| 25.96.851. 172.28       | 1.29 215,50,191                        | Quic       | 25 55              |               |                                        | (APR), IX III.2016 | ÷     | 25-8,156499                | 1991.22.9.00   | 172.28.1.29             | ICP.           | 6.49       |             | 19 https:(411) + 64242 [A                      |               |      |
| C                       | UIC                                    | Pa         | acke               | ets           |                                        | on start bott      | om is |                            | T              | CP F                    | a              | cke        | ets         |                                                |               |      |
|                         | .103., 172.29.1.29                     |            | 1392 1353          |               | Protected Payloce                      |                    |       |                            | 104.18.27.46   | 172.23.1.29             | TLSv1.2        |            |             | Application Data [TCP                          |               |      |
|                         | .153., 172.20.1.20                     |            | 1392 1358          |               | Protected Payload                      |                    |       | 678 2.262751               |                | 172.28.1.29             | TLSv1.2        |            |             | 5 Application Lata, App                        |               |      |
|                         | .1.29 216.58.193.                      |            | 75 33              |               |                                        | (KP8), DCTD-81L4   | f     | 671 2.263777               |                |                         | TCP            | 54         |             | 9 64749 + https(443) [A                        | [K] Seq:987 6 |      |
|                         | .193., 172.20.1.29                     |            | 1392 1350          |               | Protected Paylose                      |                    |       | 6/2 2.2/0512               |                | 104.15.124.96           |                |            |             | <pre># Application Data</pre>                  |               |      |
|                         | .103., 172.20.1.20                     |            | 1302 1353          |               | Protected Payloco                      |                    |       |                            | 104.15.124.96  |                         | TCP            |            |             | 18 https(443) > 64755 [Ad                      |               |      |
|                         | .103., 172.20.1.20                     |            | 1302 1353          |               | Protocted Payloce                      |                    |       |                            | 104.15.124.96  |                         | TCP            |            |             | 4 https(443) > 64755 [A                        |               |      |
|                         | .103. 172.20.1.20                      |            | 1392 1353          |               | Protected Payload                      |                    |       |                            | 104.15.124.96  |                         | TCP            | 1514 14    |             | 10  https(443) = 64755 [A]                     | x] 2ed-2048   |      |
|                         | .153. 1/2.28.1.29                      |            | 1982 1958          |               | Anatected Payloss                      |                    |       |                            | 1694.15.120.96 |                         | 11591.2        | 1392 1     |             | I Application Data                             |               |      |
| 575 1.273. 216.58       |                                        |            | 121 /9             |               | Protected Payloed                      |                    |       |                            | 104.15.124.96  |                         | ILSv1.2        |            |             | Application Data                               |               |      |
| 577 1.316. 216.58       | .1.20 216.58.103.                      |            | 75 33<br>58 25     |               |                                        | (KP3), DCID-SIE    |       |                            | 104.15.124.96  | 172.23.1.29             | TLSv1.2        | 88<br>54   |             | B Application Data<br>3 64755 → https(443) [Ac | 21 Carelon    |      |
| 216.58                  | .133 1/1.10.1.29                       | fere       | 20 12              | 66/225        | Protected Payloco                      | (199)              |       | 5/9 2.5/0802               | 172.20.1.29    | 104.15.124.56           | nue.           | 54         | c 5186      | a oeroo le netps(ees) (A                       | ry1 201-1668  |      |
|                         |                                        |            |                    |               |                                        |                    |       |                            |                |                         |                |            |             |                                                |               |      |

#### Full Page Load With Multiple Objects

| Measurement         | TCP     | QUIC    | QUIC RAW<br>Advantage | Advantage QUIC HTTP/3 | Difference                                  |
|---------------------|---------|---------|-----------------------|-----------------------|---------------------------------------------|
| Sessions            | 13      | 1       | 12                    |                       | 92% Less Sessions                           |
| Packets             | 679     | 577     | 102                   |                       | 15% QUIC Fewer Packets                      |
| Time span, seconds  | 2.371   | 1.317   | 1.054                 |                       | 44% QUIC Significantly Better Time, seconds |
| Average pps         | 286     | 438     | 152                   |                       | 53% QUIC Better Average pps                 |
| Average packet size | 899     | 1156    | 257                   |                       | 29% QUIC Larger packet size                 |
| Bytes               | 610673  | 667225  | -56552                |                       | -9% TCP Fewer Bytes                         |
| Average bits/s      | 2060000 | 4053000 | 1993000               |                       | 97% QUIC Better Throughput bits/s           |

Benchmark Page https://cloudflare-quic.com

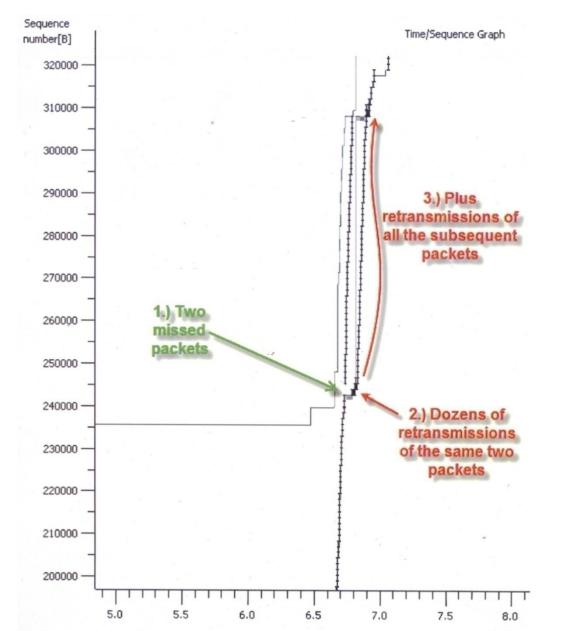
Benchmarks Prove It Faster!

#### Benchmark Results

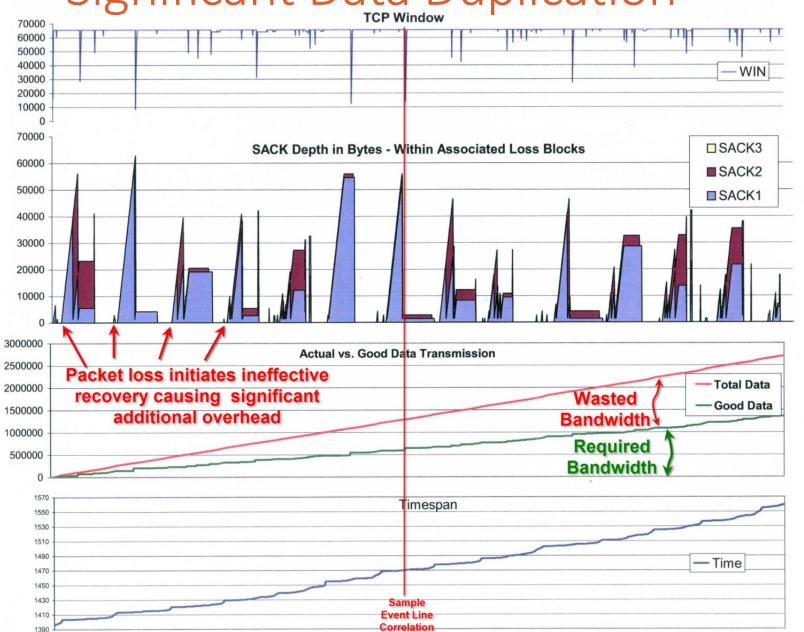
#### Single Object One Video Load

| Measurement         | ТСР     | QUIC    | QUIC RAW<br>Advantage | Mixed Results | TCP HTTP/2 | Difference                        |
|---------------------|---------|---------|-----------------------|---------------|------------|-----------------------------------|
| Sessions            | 1       | 1       | 0                     |               |            | 0% Same Sessions                  |
| Packets             | 1985    | 2123    | -138                  |               |            | -7% TCP Fewer Packets             |
| Time span, seconds  | 40.332  | 40.241  | 0.091                 |               |            | 0% QUIC Marginally Better Time    |
| Average pps         | 49      | 53      | 4                     |               |            | 7% QUIC Better Average pps        |
| Average packet size | 1089    | 1192    | 103                   |               |            | 9% QUIC Larger packet size        |
| Bytes               | 2161738 | 2530541 | -368803               |               |            | -17% TCP Fewer Bytes              |
| Average bits/s      | 428000  | 503000  | 75000                 |               |            | 18% QUIC Better Throughput bits/s |

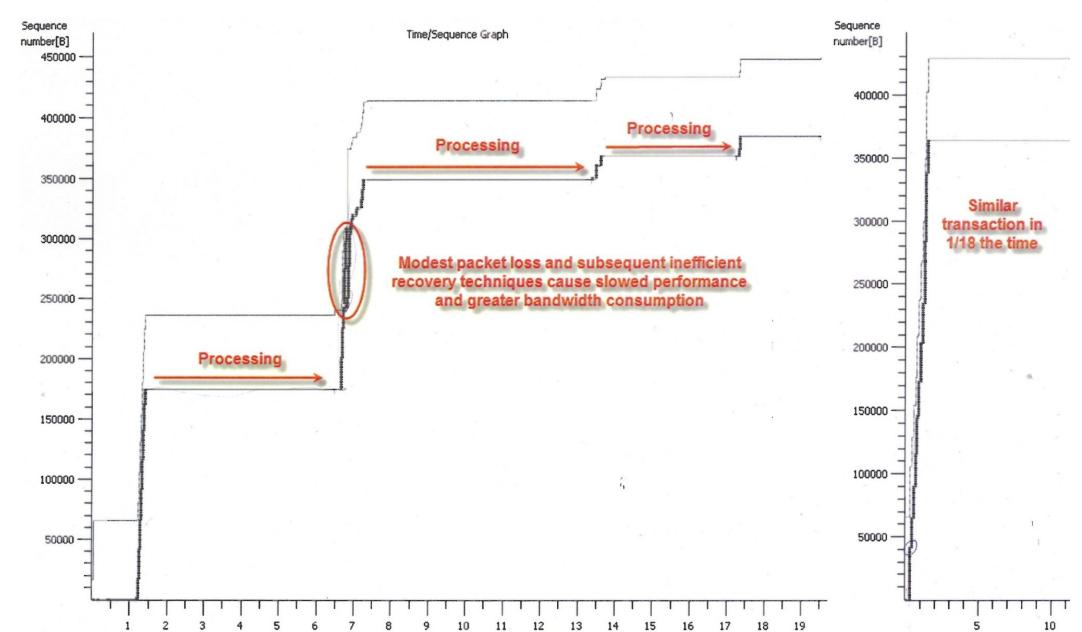
#### Full Page Load With Multiple Objects


| Measurement         | ТСР     | QUIC    | QUIC RAW<br>Advantage | Advantage QUIC HTTP/3 | Difference                                  |
|---------------------|---------|---------|-----------------------|-----------------------|---------------------------------------------|
| Sessions            | 13      | 1       | 12                    |                       | 92% Less Sessions                           |
| Packets             | 679     | 577     | 102                   |                       | 15% QUIC Fewer Packets                      |
| Time span, seconds  | 2.371   | 1.317   | 1.054                 |                       | 44% QUIC Significantly Better Time, seconds |
| Average pps         | 286     | 438     | 152                   |                       | 53% QUIC Better Average pps                 |
| Average packet size | 899     | 1156    | 257                   |                       | 29% QUIC Larger packet size                 |
| Bytes               | 610673  | 667225  | -56552                |                       | -9% TCP Fewer Bytes                         |
| Average bits/s      | 2060000 | 4053000 | 1993000               |                       | 97% QUIC Better Throughput bits/s           |




# 50 year old TCP's Idiosyncrasies

SOME REASONS FOR QUIC


### **TCP** Data Duplication Details

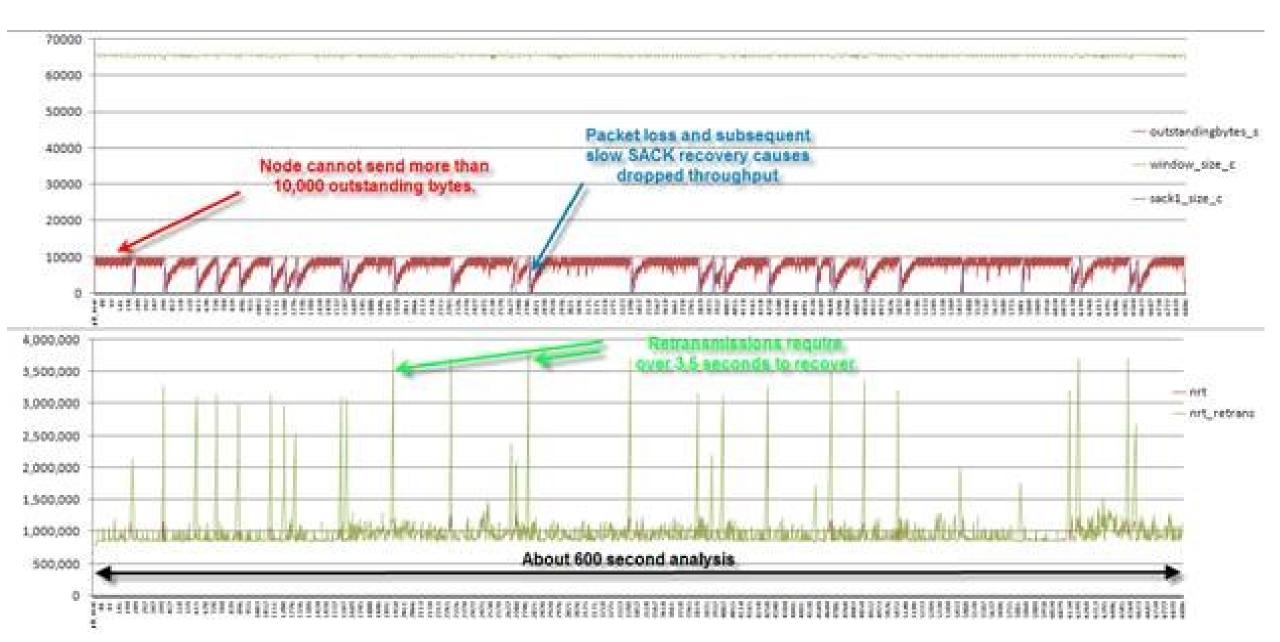


## Significant Data Duplication



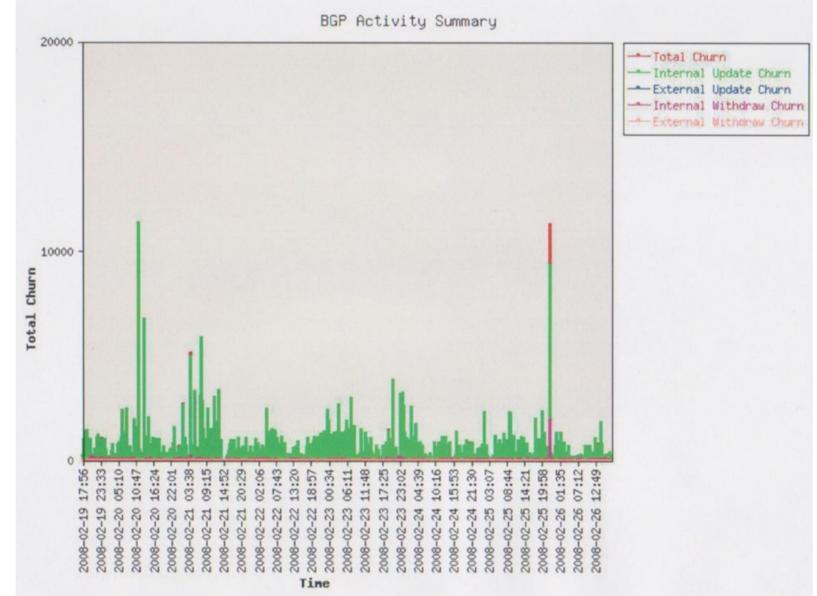
### Data Duplication & App Processing




#### TCP – Packet Loss – Poor Recovery

| 41991 > https [ACK] Seq=1292614730 Ack=1606373238 Win=65535 Len=0                                                                                        |                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| https > 41991 [PSH, ACK] Seq=1606381036 Ack=1292614730 Win=64316 Len=1380                                                                                | Ack-SLE Hole Size                                                                                                |
| https > 41991 [PSH, ACK] Seq=1606382416 Ack=1292614730 Win=64316 Len=848                                                                                 | and the second |
| 41991 > https [ACK] Seq=1292614730 Ack=1606375466 Win=65535 Len=0                                                                                        | 1303245196 should be 1380                                                                                        |
| https > 41991 [PSH, ACK] Seq= <u>1606383264</u> Ack=1292614730 Win=64316 Len= <u>1380</u>                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606384644 Ack=1292614/30 Win=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=12926 <u>14730 Ack=1606377960 Win=65535 Leven</u>                                                                                |                                                                                                                  |
| https > 41991 [PMI5SedK] Seq=1606385492 Ack=1292614/30 Win=64316 Len=1380                                                                                |                                                                                                                  |
| https > 41991 [PS4, ACK] Seq=1606386872 Ack 1292614730 min=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=1292614730 Ack=1606380188 mn=65535 Len=0                                                                                         |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606387720 Ack=1292614730 Win=64316 Len=1380                                                                                | Colorative Ask Numbers                                                                                           |
| https > 41991 [PSH, ACK] Seq=1606389100 Ack=1292614730 Win=64316 Len=848                                                                                 | Selective Ack Numbers                                                                                            |
| 41991 > https [ACK] Seq=1292614730 Ack=1606382416 Win=65535 Len=0                                                                                        | are mis-calculated                                                                                               |
| https > 41991 [PSH, ACK] Seq=1606389948 Ack=1292614730 Win=64316 Len=1380                                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606391328 Ack=1292614730 Win=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=12926147 0 Ack=1606384644 Win=65535 Len=0                                                                                        | Ack-SLE SLE-SLR hole                                                                                             |
| https > 41991 [PSH, ACK] Seq=1606392176 Ack=1292614730 Win=64316 Len=1380                                                                                | should correct at 848                                                                                            |
| https > 41991 [PSH, ACK] Seq=1606393556 Ack=1292614730 Win=64316 Len=848                                                                                 | Confect at 040                                                                                                   |
| 41991 > https [ACK] Seq=1292614730 AcK=1606385492 Win=64687 Len=0 Last good AC                                                                           |                                                                                                                  |
| [TCP Dup ACK 214#1] 41991 > https [ACK] Seq=1292614730 Ack=1606385492 Win=646<br>https > 41991 [PSH, ACK] Seq=1606394404 Ack=1292614730 Win=64316en=1114 | 08/ FGU=0 215=5303030088 2KE=5303031330                                                                          |
| [TCP Dup ACK 214#2] 41991 > https [ACK] Seq=1292614730 Ack=1006385492 Win=646                                                                            | 87 Lon-0 SI E-2000630688 SPE-2000632016                                                                          |
| [TCP Fast Retransmission] https > 41991 [PSH, ACK] Seq=1606385492 ACK=1292614                                                                            |                                                                                                                  |
| [TCP Dup ACK 214#3] 41991 > https [ACK] Seq=1292614730 Ack=1606385492 Win=646                                                                            |                                                                                                                  |
| [TCP Dup ACK 214#3] 41991 > https [ACK] Seq=1292614730 Ack=1606385492 Win=646                                                                            |                                                                                                                  |
| [TCP Dup ACK 214#4] 41991 > https [ACK] Seq=1292614730 ACK=1606385492 Win=646                                                                            |                                                                                                                  |
| [TCP Dup ACK 214#6] 41991 > https [ACK] Seq=1292614730 Ack=1606385492 Win=646                                                                            |                                                                                                                  |
| [TCP Dup ACK 214#7] 41991 > https [ACK] Seq=1292614730 Ack=1606385492 Win=646                                                                            |                                                                                                                  |
| [TCP Dup ACK 214/8 141991 https: [ACK] Seq=1292614730 Ack=1606385492 Win=646                                                                             |                                                                                                                  |
| [TCP Retransmission] https > 41991 (PSH, ACK] Seq=1606385492 Ack=1292614730 w                                                                            |                                                                                                                  |
| 41991 > https [ACK] Seg=1292614730 ACk=1606395518 Win=65535 Len=0 Recovery                                                                               |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606395518 Ack=1292614730 Win=64316 Len=1114                                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606396632 Ack=1292614730 Win=64316 Len=1380                                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606398012 Ack=1292614730 Win=64316 Len=848                                                                                 | Novertheless, receivery essure                                                                                   |
| https > 41991 [PSH, ACK] Seq=1606398860 Ack=1292614730 Win=64316 Len=1380                                                                                | Nevertheless, recovery occurs                                                                                    |
| https > 41991 [PSH, ACK] Seq=1606400240 Ack=1292614730 Win=64316 Len=848                                                                                 | over three seconds later!                                                                                        |
| https > 41991 [PSH, ACK] Seq=1606401088 Ack=1292614730 Win=64316 Len=1380                                                                                | over three occorned later.                                                                                       |
| https > 41991 [PSH, ACK] Seq=1606402468 Ack=1292614730 Win=64316 Len=848                                                                                 |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606403316 Ack=1292614730 Win=64316 Len=1380                                                                                | This helpsuise new sets                                                                                          |
| https > 41991 [PSH, ACK] Seq=1606404696 Ack=1292614730 Win=64316 Len=848                                                                                 | This behavior repeats                                                                                            |
| 41991 > https [ACK] Seq=1292614730 Ack=1606398012 Win=65535 Len=0                                                                                        | throughout the session.                                                                                          |
| https > 41991 [PSH, ACK] Seq=1606405544 Ack=1292614730 Win=64316 Len=1380                                                                                | unoughout the session.                                                                                           |
| https > 41991 [PSH, ACK] Seq=1606406924 Ack=1292614730 Win=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=1292614730 Ack=1606400240 Win=65535 Len=0                                                                                        |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606407772 Ack=1292614730 Win=64316 Len=1380                                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606409152 Ack=1292614730 Win=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=1292614730 Ack=1606402468 Win=65535 Len=0                                                                                        |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606410000 Ack=1292614730 Win=64316 Len=1380                                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606411380 Ack=1292614730 Win=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=1292614730 Ack=1606404696 Win=65535 Len=0                                                                                        |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606412228 Ack=1292614730 Win=64316 Len=1380                                                                                |                                                                                                                  |
| https > 41991 [PSH, ACK] Seq=1606413608 Ack=1292614730 Win=64316 Len=848                                                                                 |                                                                                                                  |
| 41991 > https [ACK] Seq=1292614730 Ack=1606405544 Win=64687 Len=0                                                                                        |                                                                                                                  |
|                                                                                                                                                          |                                                                                                                  |

### HOP/TTL Incongruity "our own man in the middle"


Identification: 0x36c9(14025) Fragment offset: 0 Time to live:(111) Protocol: TCP (0x06, Header checksum: 0xe3b2 [correct] Source: 214.13.192.184 (214, 13.192.184) Destination: 150.177.195.220 (150.177.195.220) Transmission Control Protocol, Src Port: 41991 (41991), Dst Port: 443 (443), Seq: 0, Ack: 1454884, Len: 0 Identification: 0x074f (1871) Flags: 0x04 (Don't Fragment) Incongruent Congruent Fragment offset: 0 Congruent TTL TTL & Fragment ID Time to live: (102) Protocol: TCP (0x06) Progression Fragment ID Header checksum: 0x1c2d [correct] Source: 214.13.192.184 (214.13.192,184) Destination: 150.177.195.220 (150.177.195.220) Transmission Control Protocol, Sc Port: 41991 (41991), Dst Port: 443 (443), Seq: 0, Ack: 1454884, Len: 0 Identification: 0x36ca (14026) Flags: 0x04 (Don't Fragment) Fragment offset: Time to live: (111) Indicates "our own man in the middle" potential Protocol: TCP (0x06) (Firewall, Wan Optimizer, Load Balancer) ⊞ Header checksum: 0xe3b1 [correct] Source: 214.13.192.184 (214.13.192.184) Destination: 150.177.195.220 (150.177.195.220) Transmission Control Protocol, Src Port: 41991 (41991), Dst Port: 443 (443), Seq: 0, Ack: 1457378, Len: 0

### TCP – Session Performance



#### NAT, PAT or Route Changes Impact on Sessions

Instability of routing metrics



21

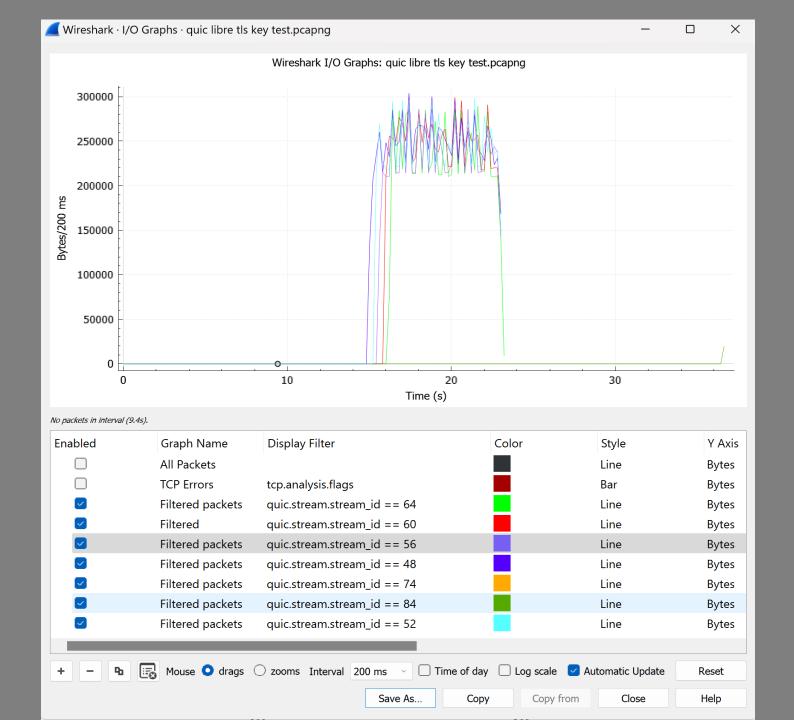
### **QUIC** Decrypted

#### quic libre tls key test.pcapng

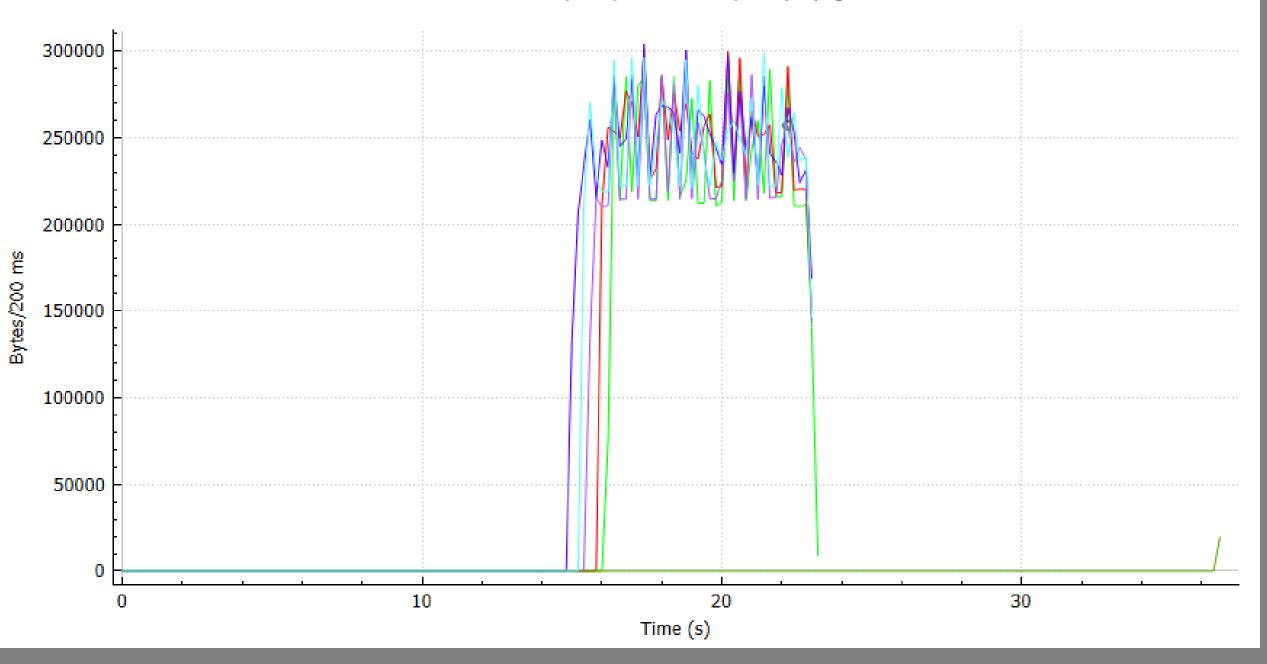
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

#### ◢ ■ ⊿ ◎ ⊨ ≐ ⊠ ⊘ | ♀ ⇔ ⇒ ≌ ∓ ⊻ 📃 🗏 � ♀ ♥ 표

quic.stream.stream\_id == 0


| No.          | T Since St     | Delta Source                       | Destination                       | Protocol | Length Info                                                                                                                    |
|--------------|----------------|------------------------------------|-----------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------|
| <b>⊢</b> 263 | 7 13.099943000 | 0.043996000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | QUIC     | 1292 Initial, DCID=79a35af38d80a3ff, PKN: 1, PADDING, PING, CRYPTO, CRYPTO, CRYPTO, PING, CRYPTO, PADDING                      |
| 264          | 0 13.165631000 | 0.026792000 quic2.end2endspeed.com | 192.168.0.211                     | QUIC     | 1294 Handshake, SCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 0, CRYPTO, CRYPTO                                         |
| 264          | 1 13.166051000 | 0.000420000 quic2.end2endspeed.com | 192.168.0.211                     | QUIC     | 1294 Handshake, SCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 1, CRYPTO                                                 |
| 264          | 2 13.166051000 | 0.000000000 quic2.end2endspeed.com | 192.168.0.211                     | QUIC     | 1288 Handshake, SCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 2, CRYPTO                                                 |
| 264          | 3 13.166500000 | 0.000449000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | QUIC     | 93 Handshake, DCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 2, ACK                                                      |
| 264          | 4 13.167734000 | 0.001234000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | QUIC     | 94 Handshake, DCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 3, ACK                                                      |
| • 264        | 8 13.223102000 | 0.021612000 quic2.end2endspeed.com | 192.168.0.211                     | QUIC     | 1123 Handshake, SCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 3, CRYPTO, CRYPTO, CRYPTO                                 |
| 264          | 9 13.225165000 | 0.002063000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | QUIC     | 94 Handshake, DCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 4, ACK                                                      |
| 265          | 0 13.225969000 | 0.000804000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | QUIC     | 127 Handshake, DCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 5, CRYPTO                                                  |
| 265          | 1 13.226235000 | 0.000266000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | HTTP3    | 125 Protected Payload (KP0), DCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 6, STREAM(2), SETTINGS                       |
| 265          | 2 13.226678000 | 0.000443000 192.168.0.211          | <pre>quic2.end2endspeed.com</pre> | HTTP3    | 494 Protected Payload (KP0), DCID=000000000000000097ec9e4b8c0a22578e354957c, PKN: 7, STREAM(2), PRIORITY_UPDATE, STREAM(0), HE |
| 265          | 8 13.287632000 | 0.023162000 quic2.end2endspeed.com | 192.168.0.211                     | HTTP3    | 288 Protected Payload (KP0), PKN: 0, CRYPTO, CRYPTO, DONE, NCI, STREAM(3), STREAM(3), SETTINGS                                 |
| 265          | 9 13.287632000 | 0.000000000 quic2.end2endspeed.com | 192.168.0.211                     | HTTP3    | 1292 Protected Payload (KP0), PKN: 1, STREAM(0), HEADERS                                                                       |
| 266          | 0 13.287632000 | 0.000000000 quic2.end2endspeed.com | 192.168.0.211                     | QUIC     | 1292 Protected Payload (KP0), PKN: 2, STREAM(0)                                                                                |
| 266          | 1 13.287632000 | 0.000000000 quic2.end2endspeed.com | 192.168.0.211                     | QUIC     | 1292 Protected Payload (KP0), PKN: 3, STREAM(0)                                                                                |
| 264          | 2 12 288173000 | 0 000511000 quic? endlendeneed com | 102 168 0 211                     | ουτο     | 1202 Destasted Daviosd (VDA) DVN+ A STREAM(A)                                                                                  |

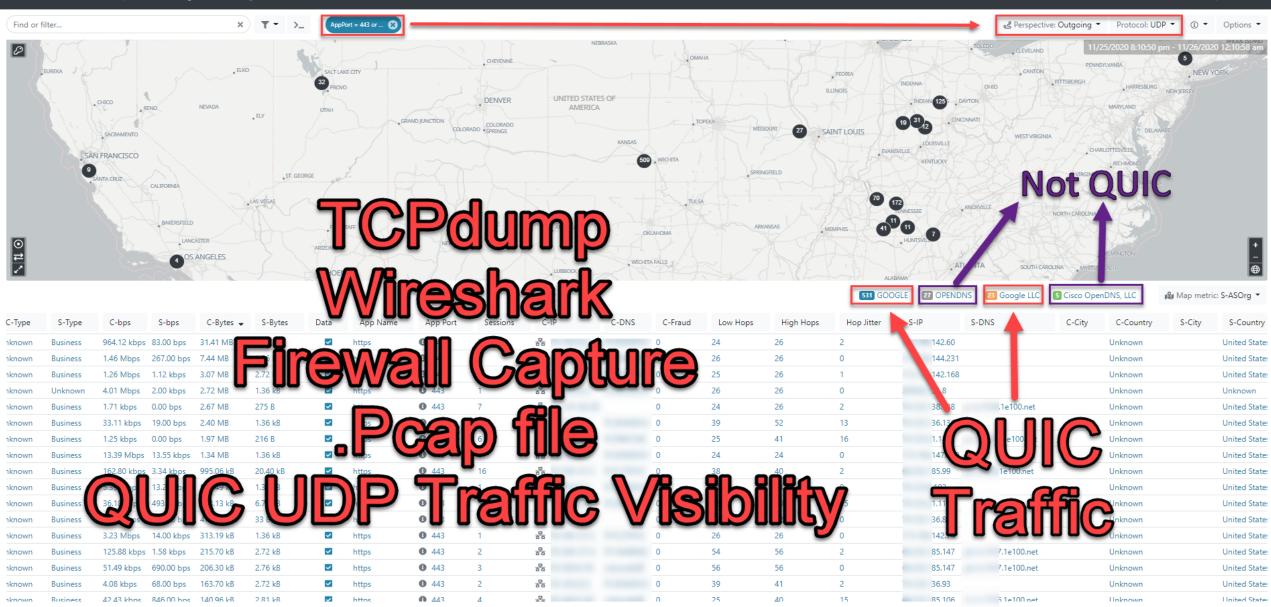
| <ul> <li>Extension: quic_transport_parameters (len=102)</li> </ul>                                                     | 0000 06 00 40 7d 08 00 00 79 00 77 00 00 00 00 00 10 ··@}··y                                                                                          |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type: quic_transport_parameters (57)                                                                                   | 0010 00 05 00 03 02 68 33 00 39 00 66 04 04 80 83 00 ·····h3·                                                                                         |
| Length: 102                                                                                                            | $0020$ 00 09 01 03 08 02 40 80 05 04 80 01 00 00 06 04 $\cdots $                                                                                      |
| > Parameter: initial max data (len=4) 8585216                                                                          | 0030 80 01 00 00 07 04 80 01 00 00 01 04 80 00 fd e8                                                                                                  |
| > Parameter: initial max streams uni (len=1) 3                                                                         | 0040 03 04 80 00 ff f7 0e 01 02 0b 01 19 0a 01 03 00                                                                                                  |
| > Parameter: initial max_streams_bidi (len=2) 128                                                                      | 0050 08 79 a3 5a f3 8d 80 a3 ff 0f 14 00 00 00 00 y Z · · ·                                                                                           |
| > Parameter: initial max stream data bidi local (len=4) 65536                                                          | 0060 00 10 09 7e c9 e4 b8 c0 a2 25 78 e3 54 95 7c 02                                                                                                  |
| <pre>&gt; Parameter: initial_max_stream_data_bidi_remote (len=4) 65536</pre>                                           | 0070 10 50 08 02 5c 40 f3 2c d2 b0 94 04 80 21 4e 58 P· \@,<br>0080 11 05 40 7d 43 9e 0b 00 0f c7 00 00 0f c3 00 05 · · · · · · · · · · · · · · · · · |
| <pre>&gt; Parameter: initial max stream data uni (len=4) 65536</pre>                                                   | 0080 11 06 40 7d 43 9e 0b 00 0f c7 00 00 0f c3 00 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                  |
| <pre>&gt; Parameter: max_idle timeout (len=4) 65000 ms</pre>                                                           | 00a0 04 eb 8e ef 4f eb 2b c4 44 29 b3 22 0b c3 ef f90++                                                                                               |
| <pre>&gt; Parameter: max_udp_payload_size (len=4) 65527</pre>                                                          | 00b0 ab 33 30 0d 06 09 2a 86 48 86 f7 0d 01 01 0b 05 30 **                                                                                            |
| <pre>&gt; Parameter: max_udp_payload_size (len=4) 0352/<br/>&gt; Parameter: active_connection_id_limit (len=1) 2</pre> | 00c0 00 30 32 31 0b 30 09 06 03 55 04 06 13 02 55 53 021 0                                                                                            |
| <pre>&gt; Parameter: active_connection_id_inmit (ien=i) 2 &gt; Parameter: GREASE (len=1) 25</pre>                      | 00d0 31 16 30 14 06 03 55 04 0a 13 0d 4c 65 74 27 73 1.0U                                                                                             |
|                                                                                                                        | 00e0 20 45 6e 63 72 79 70 74 31 0b 30 09 06 03 55 04 Encrypt                                                                                          |
| <pre>&gt; Parameter: ack_delay_exponent (len=1) &gt; Parameter: ack_delay_exponent (len=1)</pre>                       | 00f0 03 13 02 52 33 30 1e 17 0d 32 33 30 34 31 36 30 ···R30··                                                                                         |
| <pre>&gt; Parameter: original_destination_connection_id (len=8)</pre>                                                  | 0100 30 33 34 33 34 5a 17 0d 32 33 30 37 31 35 30 30 03434Z··                                                                                         |
| <pre>&gt; Parameter: initial_source_connection_id (len=20)</pre>                                                       | 0110 33 34 33 33 5a 30 21 31 1f 30 1d 06 03 55 04 03 3433Z0!1                                                                                         |
| <pre>&gt; Parameter: stateless_reset_token (len=16)</pre>                                                              | 0120 13 16 71 75 69 63 32 2e 65 6e 64 32 65 6e 64 73 ··quic2.                                                                                         |
| ✓ CRYPTO                                                                                                               | 0130 70 65 65 64 2e 63 6f 6d 30 82 01 22 30 0d 06 09 peed.com                                                                                         |
| Frame Type: CRYPTO (0x0000000000000000)                                                                                | 0140 2a 86 48 86 f7 0d 01 01 01 05 00 03 82 01 0f 00 *·H·····                                                                                         |
| Offset: 125                                                                                                            | 0150 30 82 01 0a 02 82 01 01 00 b0 07 19 4a 30 33 8b 0                                                                                                |
| Length: 926                                                                                                            | 0160 79 33 5f df 74 ee dd 05 82 d2 38 1c ff b6 35 c6 y3_t.                                                                                            |
| Crypto Data                                                                                                            | 0170 f0 82 93 b2 2e 0e 63 51 23 b6 2e f6 6a ae e2 adcQ<br>0180 3d 4f 48 22 db 5a bb ff 5d 4a 0b 01 bd d3 aa 1b =0H".Z.                                |
| ✓ TLSv1.3 Record Layer: Handshake Protocol: Certificate (fragment)                                                     |                                                                                                                                                       |
| Handshake Protocol: Certificate (fragment)                                                                             | 0190 ba 9b 41 a7 5f 13 a7 0c c0 36 98 ae 72 d3 a9 99 ···A···<br>01a0 ba 42 d8 6e 8c 3c e5 da 0b 43 e8 b1 3b f8 31 97 ······                           |
| Reassembled Handshake Message in frame: 2648                                                                           | 01b0 50 e9 8d 75 6a 43 8b ae 32 50 9c 88 95 c4 5c 02 P···ujC··                                                                                        |
|                                                                                                                        |                                                                                                                                                       |
|                                                                                                                        | Frame (1294 bytes) Decrypted QUIC (99 bytes) Decrypted QUIC (1060 bytes)                                                                              |


o x

×→ -

\_




Wireshark I/O Graphs: quic libre tls key test.pcapng



## How to identify existing QUIC Users

bill.alderson@hopzero.com >

#### HOPZERO 👌 Alarms 🙍 Captures 🖗 Investigation 🏚 Settings



## UDP vs TCP vs QUIC Firewall

QUIC uses UDP Port 443 to Servers

UDP firewall state is basic compared to TCP

QUIC encrypts everything above UDP except small part of initial packets containing Link ID

Firewalls blind - cannot inspect protocol or content!

Apps- Browsers now, but many more uses coming

QUIC overcomes NAT issues

It only cares about Link ID's, not Port#'s not IP's

Sends large MTU initial packet sizes

blic UDP 110F 1525-2 1525-1525 SOK PPS F

#### What to do next?

| <ul> <li>A.) Update Router-Firewall</li> <li>B.) Use QUIC carefully</li> <li>C.) Join Cogent.Community QUIC Protocol Space</li> </ul>               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A.) Inform IT Security about QUIC working, or not.</li> <li>B.) Careful they don't "shoot the messenger"</li> </ul>                        |
| A.) Learn tools to identify QUIC<br>B.) Become Certified in QUIC <u>https://</u> Cogent.Community                                                   |
| A.) Let us know about QUIC supported products<br>B.) Tell us about new QUIC products coming<br>C.) Sponsor and participate in Cogent.Community QUIC |



## Decrypting TLS & QUIC Headers

To record QUIC session information including encryption keys, you can use the SSLKEYLOGFILE environment variable. This method is supported by many TLS libraries, such as OpenSSL and BoringSSL, which are often used in QUIC implementations. The SSLKEYLOGFILE environment variable specifies a file path where the TLS session secrets will be written, enabling decryption of QUIC traffic for analysis and diagnostic purposes.

Here's how to use the SSLKEYLOGFILE method:

1.Set the SSLKEYLOGFILE environment variable to the desired file path before starting the client or server application that uses QUIC:

For Linux and macOS:

javascript

export SSLKEYLOGFILE=/path/to/your/sslkeylogfile.txt

#### For Windows:

#### vbnet

set SSLKEYLOGFILE=C:\path\to\your\sslkeylogfile.txt

2.Run the client or server application that uses QUIC. The application will write the TLS session keys to the specified file as they are established.

3.Use the collected keys to decrypt and analyze the QUIC traffic. Tools like Wireshark can use these keys to decode encrypted QUIC streams in captured packet data.

Remember that handling encryption keys securely is critical, as exposing these keys can compromise the security and privacy of the QUIC sessions. Only use this method for diagnostic purposes and with the appropriate permissions, and always follow best practices for handling sensitive data.

\*Some Chat GPT helped find and organize some of this text.

## QUIC Improvements over TCP

Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the processing of subsequent packets in the same data stream, causing increased latency and reduced performance. QUIC solves the head-of-line blocking problem more effectively than TCP by employing the following techniques:

1. Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is independent of the others. This means that if a packet is lost or delayed in one stream, it does not affect the other streams. In contrast, TCP treats all data within a connection as a single, ordered byte stream, which means that any packet loss or delay can block the entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather than at the connection level, as in TCP. This enables QUIC to recover from packet losses in one stream without affecting other streams, further reducing the impact of head-of-line blocking.

**3**.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not rely on a single, global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and retransmit lost packets without waiting for a full round-trip time, as is typically the case with TCP.

4.Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about received packets, as well as any gaps in the sequence of received packets. This allows the sender to quickly identify lost packets and retransmit them, reducing the impact of head-of-line blocking.

By using these techniques, QUIC effectively mitigates the head-of-line blocking problem, leading to better performance, reduced latency, and improved user experience, especially in environments with high packet loss or network congestion.

## **O-RTT Data Request Response Size**

In a O-RTT (Zero Round-Trip Time) session, the amount of data that can be sent in the initial request depends on the server's maximum allowed O-RTT data size, which can vary depending on the server's configuration and preferences. There isn't a fixed theoretical capacity for all cases, as it depends on the server's specific settings.

However, it's important to note that 0-RTT data should generally be limited to a small amount, as sending large amounts of data in the initial request could increase the risk of replay attacks. The server must enforce proper anti-replay measures and limit the use of 0-RTT data to mitigate this risk.

In practice, O-RTT data is typically used for non-sensitive, idempotent requests like HTTP GET requests or other actions that can be safely retried without causing unintended side effects. This ensures that even if a replay attack occurs, the consequences are minimal.

In TLS 1.3, the "max\_early\_data\_size" parameter within the "NewSessionTicket" message specifies the maximum amount of 0-RTT data a client can send during a 0-RTT session. The "max\_early\_data\_size" is a 32-bit unsigned integer, so the maximum value that can be represented is 2^32 - 1 bytes, which is equal to 4,294,967,295 bytes or approximately 4 GiB.

However, it's important to remember that setting such a high limit for 0-RTT data is not recommended, as it could increase the risk of replay attacks. In practice, servers are likely to set much smaller limits to ensure security and protect against potential abuse.

## **QUIC Frame Concept**

The QUIC protocol uses a modular and extensible framing mechanism, which allows for the efficient encoding of different types of data while also providing flexibility for future enhancements. Some common types of frames in QUIC include:

STREAM frames: These frames carry application data between endpoints and are used for reliable, in-order transmission of data within a specific QUIC stream.

ACK frames: These frames are sent by the receiving endpoint to acknowledge the receipt of one or more packets, indicating the packets' sequence numbers and any gaps (i.e., lost or delayed packets).

MAX\_DATA and MAX\_STREAM\_DATA frames: These frames are used for flow control, with MAX\_DATA controlling the overall amount of data that can be sent across all streams and MAX\_STREAM\_DATA controlling the amount of data that can be sent within a specific stream.

RESET\_STREAM frames: These frames are sent by an endpoint to indicate that it wants to abruptly terminate a stream without completing the transmission of all data.

CONNECTION\_CLOSE and APPLICATION\_CLOSE frames: These frames are used to signal the termination of a QUIC connection, either due to an error or a graceful shutdown initiated by the application.

PING frames: These frames are used to test the connection's liveness and to keep the connection alive in the presence of idle timeouts.

By using frames to carry various types of information, QUIC enables efficient, flexible, and extensible communication between endpoints while maintaining performance and security.

#### Introduction to QUIC for Network and Security Technologists

**QUIC (Quick UDP Internet Connections)** is a transport layer protocol started by Jim Roskind at Google (Now AWS) to improve the security, performance, and reliability of web connections. QUIC uses UDP as its transport protocol, providing faster connection establishment, reduced latency, and built-in encryption.

**Internet Engineering Task Force IETF** changed its name to QUIC – no acronym to lose its Google roots. Greatly enhancing and integrating with TCP features.

**Encryption and security:** QUIC incorporates Transport Layer Security (TLS) 1.3, ensuring all transmitted data is encrypted by default. This enhances security compared to older HTTP/2 connections, which do not always require encryption.

**Faster connection establishment:** QUIC reduces the number of round trips required to establish a secure connection, resulting in a faster and more efficient process compared to traditional TCP/TLS connections.

**0-RTT connection resumption:** QUIC supports 0-RTT (Zero Round-Trip Time) connection resumption, allowing for faster reconnections between clients and servers that have previously communicated. This feature should be implemented with caution, as it can pose a risk of replay attacks.

**Connection migration:** QUIC allows for connection migration, enabling a client to change its IP address without losing the connection. This feature improves the stability of secure connections in mobile or unstable network environments.

Multiplexed streams and head-of-line blocking: QUIC's support for multiplexed streams can help mitigate head-of-line blocking, enhancing the performance and security of connections by reducing latency.

**Forward error correction:** QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing the reliability and security of connections.

**Potential vulnerabilities:** While QUIC is designed with security in mind, potential vulnerabilities exist, such as 0-RTT vulnerabilities, key update attacks, DoS attacks, Connection ID privacy concerns, and implementation flaws. Awareness and mitigation strategies are essential for ensuring optimal security.

**Limited adoption and compatibility:** QUIC is becoming widely adopted, with more implementations monthly. Network and security technologists should be prepared to work with both QUIC-enabled and non-QUIC environments.

## QUIC's Top 5 Security Vulnerabilities

**0-RTT vulnerabilities:** The 0-RTT (Zero Round-Trip Time) feature can make QUIC connections more susceptible to replay attacks. An attacker may intercept and replay a 0-RTT connection attempt to gain unauthorized access. To mitigate this risk, servers should enforce proper anti-replay measures and limit the use of 0-RTT data.

**Key update attacks:** QUIC's key update mechanism, which periodically updates encryption keys, could be exploited by attackers to force clients or servers to use weak or compromised keys. This issue can be addressed by implementing proper key management practices and ensuring that keys are securely generated and stored.

**Denial of Service (DoS) attacks:** QUIC's reliance on the User Datagram Protocol (UDP) could make it more susceptible to DoS attacks. Attackers might flood a server with malformed or large packets to exhaust its resources. Server operators should employ rate limiting, filtering, and other techniques to prevent such attacks.

**Connection ID privacy concerns:** QUIC's use of Connection IDs to maintain sessions can improve privacy but may also be exploited by attackers to track users across different connections. Ensuring that Connection IDs are generated and managed securely can help minimize this risk.

**Implementation flaws:** As with any protocol, security issues may arise due to flaws in the implementation of QUIC by software developers. To address this, it is essential to use well-tested and regularly updated libraries, adhere to best practices, and perform thorough security audits and testing of QUIC-enabled applications.

## QUIC: Top 10 Things to Know

**Encryption by default:** QUIC incorporates built-in encryption using Transport Layer Security (TLS) 1.3, ensuring that all data transmitted is secure by default. This is an improvement over HTTP/2, which does not require encryption.

**Connection establishment:** QUIC reduces the number of round trips required to establish a secure connection, speeding up the process and making it more efficient.

**0-RTT connection resumption:** QUIC allows for 0-RTT (Zero Round-Trip Time) connection resumption, enabling faster reconnections between clients and servers that have previously communicated. This can, however, pose a risk of replay attacks if not properly implemented.

**Improved privacy:** QUIC's connection identifiers do not reveal user IP addresses, making it harder for eavesdroppers to track users across different connections and improving privacy.

**Resistance to replay attacks:** QUIC has built-in mechanisms to counter replay attacks, but proper implementation is essential to ensure the security of the protocol.

**Connection migration:** QUIC supports connection migration, allowing a client to change its IP address without losing the connection. This can help maintain secure connections, even in mobile or unstable network environments.

**Forward error correction:** QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing reliability and security.

**Reduced impact of head-of-line blocking:** QUIC's multiplexed streams can help mitigate head-of-line blocking, improving the performance and security of connections.

## Key QUIC vs. TCP Improvements

Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the processing of subsequent packets in the same data stream, causing increased latency and reduced performance. QUIC solves the head-of-line blocking problem more effectively than TCP by employing the following techniques:

**1.Independent streams:** QUIC uses multiplexed streams over a single connection, where each stream is independent of the others. This means that if a packet is lost or delayed in one stream, it does not affect the other streams. In contrast, TCP treats all data within a connection as a single, ordered byte stream, which means that any packet loss or delay can block the entire connection.

**2.Stream-level error correction:** QUIC handles error correction and retransmissions at the stream level, rather than at the connection level, as in TCP. This enables QUIC to recover from packet losses in one stream without affecting other streams, further reducing the impact of head-of-line blocking.

**3.Faster packet retransmissions:** QUIC can retransmit lost packets more quickly than TCP because it does not rely on a single, global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and retransmit lost packets without waiting for a full round-trip time, as is typically the case with TCP.

**4.Selective acknowledgments:** QUIC uses selective acknowledgments (ACKs) to inform the sender about received packets, as well as any gaps in the sequence of received packets. This allows the sender to quickly identify lost packets and retransmit them, reducing the impact of head-of-line blocking.

### QUIC Encryption Explained vs TCP

QUIC packet header encryption is a mechanism that protects certain parts of the QUIC packet header from being observed or modified by third parties, such as middleboxes or eavesdroppers. This enhances privacy and security compared to traditional transport protocols like TCP, where some header information remains exposed.

In QUIC, the packet payload and certain parts of the header are encrypted together using the same encryption keys. The payload is encrypted using modern cryptographic algorithms like AES-GCM or ChaCha20-Poly1305, which also provide authentication.

Not all parts of the QUIC header are encrypted. The packet number, for example, remains in the clear. The reason is to allow for better handling of packet loss and reordering, as the packet number helps identify which packets have been received and which ones are still missing. QUIC:

**1.Encrypts the payload:** The payload data (e.g., application data) is encrypted using a symmetric key negotiated during the QUIC handshake.

- 2.Protect specific header fields: QUIC protects certain header fields, such as the Key Phase, Spin Bit, and some reserved bits, using a technique called "header protection." This is done by generating a header protection mask based on the packet encryption key and the unprotected header.
- **3.Apply the header protection mask:** The header protection mask is XORed with the specific header fields that need to be protected. This process encrypts these fields and prevents them from being observed or modified by third parties.
- 4.QUIC uses TLS for header encryption: The header protection mechanism is built into the QUIC protocol itself. As a result, there's no "second encryption" layer for the header compared to the payload. The encryption keys for both payload and header protection are derived from the same initial secret negotiated during the QUIC handshake.
- 5.QUIC uses per packet encryption vs. TCP Stream-based encryption: When TCP is combined with TLS, it provides stream-based encryption, which means that the entire data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet loss or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.
- **6.TCP has Exposed headers:** In, some header information remains exposed, which can potentially be exploited by attackers or used for network analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.
- 7.TCP does not natively support connection migration: If a user changes their network connection (e.g., switching from Wi-Fi to cellular data), the existing TCP connection/s must be terminated, and a new connection needs to be established, causing additional latency and potential disruptions.

## QUIC vs. TCP Encryption

Per-packet encryption: QUIC encrypts every packet individually with packet numbers in the clear. This allows for better handling of packet loss and reordering compared to TCP. QUIC uses modern cryptographic algorithms such as AES-GCM or ChaCha20-Poly1305 for encryption and authentication.

Packet header protection: QUIC also protects packet headers from being observed or modified by third parties. This enhances privacy and security while preventing potential attacks that could exploit exposed header information.

Connection migration: QUIC supports connection migration, which means that a connection can be transferred between IP addresses without breaking the connection. This can be useful in cases of network changes or mobility (e.g., when a user switches from Wi-Fi to cellular data). Per-packet encryption enables this feature, as packets can be independently decrypted and processed.

#### TCP encryption (with TLS):

Protocol: TCP is built on top of IP and provides a reliable, ordered, and error-checked delivery of data between applications. TCP is the foundation for many application-level protocols, including HTTP, HTTPS, and FTP.

Stream-based encryption: When TCP is combined with TLS, it provides stream-based encryption, which means that the entire data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet loss or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

Exposed headers: In TCP, some header information remains exposed, which can potentially be exploited by attackers or used for network analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

Connection migration limitations: TCP does not natively support connection migration. If a user changes their network connection (e.g., switching from Wi-Fi to cellular data), the existing TCP connection must be terminated, and a new connection needs to be established, causing additional latency and potential disruptions.

## QUIC Transport Protocol IETF rfc-9000 & related rfcs





### **Resources Connection & Live Streams**

https://linkedin.com/in/billaderson https://Cogent.Management/live https://Cogent.Community









Join Cogent.Community with LinkedIn Credentials Cogent ... clear, collaborative, insightful powerfully persuasive, balanced, weighty, inclusive



TopicsProf Assn'sConferencesSME'sVendorsContentVideosLiveStreamCollaborationRootCauseAnalysisChatGPTCybersecurityQUICProtocolSharkFest - WireSharkBettyDuboisISSA / ISC2LeadershipPodcasts

