QUIC Protocol Overview for Enterprises
With Packet Analysis

Bill. Alderson@Cogent.Management

SharkFes ,’23 US

Wireshark Developer and User Conference e San Diego, CA e June 10-15 etman007

Course PDF https://Cogent.Management/SharkFestQUIC

QUIC

REPLACES
TCP-SSL-HTTP

READY ?

Wireshark Developer and User Conference « San Diego, CA « June 10-15

CAUTION

PROTOCOL

QUIC Protocol Is Rapidly
Replacing TCP!

SharkFest 2023

How QUIC Works And What Are The Security Concerns?

Why QUIC is Faster? Show You How To Perform “Packet Based Analysis”

Distillation of 1,000 IETF rfc-9000 and Related Standards Pages

Why Does It Lower Firewall Sessions 20 to 1 vs TCP?

How to Implement QUIC on Your App or Site - Fast!

QUIC Protocol Adoption

C I o u d f I a r e)) Application layer attack activity o

Top 10 attacks by target or source location @ ¥ Sort order: O Source

ol

GBI
MY =
call
NLE
INE

In

o
N
Hca PT -

Source Target

Security & Attacks HTTP versions
Insight into network and application layer affack traffic HTTP/1.x vs. HTTP/2 vs. HTTP/3 @
Layer 3/4 Attacks

DDoS Attack Type @ +

HTTP/3
28.3%

HTTR/2
65.0%

HTTP/1.X
. 6.7%

Current Internet 1x QUIC 3x Faster

Client Server
 QUIC —Quic—>
TLS |e—Quic—]

< — _HTTP —Quic—,

300ms 100ms ‘

TCP Vs. QUIC QUIC

Fa3s’t‘er LATENCY
SAVINGS

'

P Firewall Vendors
~ - o Tell Enterprises

7 QLI “DENY” QUIC

Firewall Vendors that recommend Blocking QUIC UDP Port 443 in
Enterprise Networks

Cisco
PaloAlto Networks

CheckPoint
Fortinet

Each vendor provides specific instructions to block QUIC

Web Performance

at a Price... R An “Attractive Nuisance”
N\ Until Enterprise Firewall
o I Improvements Secure Its Use

2012 accidentally discovered... by Jim Roskind at
Google, now AWS

Google, YouTube, Gmail, Facebook, Microsoft
Uber and Cloudflare already use QUIC!

Distant or rural wusers receive the biggest
performance gain.

QUIC Initial Connect — some headers exposed

[W Toesctag.sni == rl—sr-géi7entr.googhevien.com™ |

Ho. Time Source Dectinabion
1 0.080800 172.20.1.29 173.194.,141. 247
S B.029508 172.29.1.29 173.194.141. 247 QUIC
"‘-..___ "‘-.___

Tag/value: Tiilldldld'-'iﬁ«ﬂdﬁ5455!TI'BH!??iilﬁTﬁfﬁfﬁTE:EETEﬁ%ﬁFiﬁMd
Serwer Nase Imdication: rl---sn-gdf7safr.googlevides.cos

w Tagfvalue: STE (Source Address Token) [ls54)
Tag Type: STE (Source Address Token)

Tag offiet end: B&
[Tag length: 4]

Frofocod Length Qlen QPMum CumBytes [nfo
QUIC 1392 1358
1392 1350

1
4

1392 Client Hello rl---sp-gdf7snTr.geoglevides.com 0858 X509
2TB4 Client Hello

Sarger Mame Indacation her Proof demend
M (expe0oble) 108

e B T

23120

Fl---in-gaf7enTr.googlevides.com (058 X599 23145 157285648

. ! ! ! ! ! ! !
N\ I I I I I I I

5291456

Tagfvalue: cPe2llcl@F9T814020305chda5453FF1d23ceced 648900 660ITAbaR1c0TaFcaldaniade.
2 42 91 28 8 53 46 43 57

AERIE
=
S
4

TREEBD
[Zfgbeparieyny
iTTRLEREBEERR
IRANEIRETRERE

JEBFNEAFEES
- S R

EERYEREAR
IHARGETANRES

a
1
N

o

57

Enterprise firewall
improvements need to
identify well formed
QUIC packet headers

46 81 88 Bd 72 31 M 2d
73 6o 37 71 Ie 67 &F &F
e B3 6f &d % £2 11 <l
a5 45 3 F1 42 3¢ ec e
lc & 4f ca 14 ae Ba de
1f #¢ #0 00 & 57 3 63
Bl 68 92 92 la o8 Te ed
53 5d o9 bP al &d a3 7B
3F 34 ed BS b9 20 Td 6F
53 47 43 6B 72 &f &d 65
34 3@ e 31 39 33 M 57
54 2@ 311 30 e 38 3b 20
36 34 ab <5 6b ce BF M4

WA A AR AR AR A Ba RP

=sh=-GaF7 SNTP, god

M8y
&H- -KTK-

E?

o
. I

Improve and upgrade
SMB - Home router-
firewalls to identify

QuIC

There are a few things a firewall can validate in the initial QUIC connection

There also a few things the firewall can harvest from connection requests for
reference in addition to the IP addresses only a vendor can implement.

A powerful firewall can build custom filters with the help of Wireshark traces

Technically it is
possible upgrades can
be accomplished at
reasonable costs

New firewalls
worldwide might cost
S1 Trillion and take 10+

years

~ Speed

Idbe connaction siate OMax in QEsIrdRTT [ndtlel session/oone Indisl stream fk QPsdle ©
15728649 6291456 i)
731

Security

Why Middleboxes (Firewalls) Blind to QUIC?

Discrete HTTP TCP SSL TLS Transactions

4) CP SYN

50 TCP Sessions To 50 x 100ms SYRICA|<CK

Get Full Web Page =5Seconds |\ yTTP GET-
_ REPLYZ
N

Middleboxes (Firewalls) Blind to QUIC
4 }:firewallj M

Switch
Router

NAT ¢ Internet <
PAT | N

N\

_ ~ YA\ 4)
1 Session 1 x 100ms Cl)gg Multi-Media

(_
— To Get Full = 100ms ACK Multi-Stream
| Web Page Plus 50 Gets HTTP/3 GETS; Single Session

- QEPLY J
QUIC Combined O-RTT HTTP TLS FEC w/Fast Mobile Reconnects

. TCP Full Page Packet by Packet Performance Analysis

Ll Glen RN
L L
1 1AR
are flMeLl ored Packet | . 2 -
1842 ke £K] fog=1 ALl
8 B RTT, R TRR % et ARG 3G
1% - ¥ (R Lt e e 3 el |] taenol Arl
L] BETT, CCID=B13¢Scalt@zesecs
130 1356 O ETT, SCID-81aScasBstes:
7 d
L2
18
1
1940 -

V1 3 ‘ . f i i CEC N YT
02062, : rauecies B £ 15 B, 1317 A E E Client. By Lacha Sharge Ciznm
LR - FITeETES R AT = §dTEL | ARK | doe=340T
LR b
M sl b R - iva o [ETD=R1b#*

-H1DTE

23 90563 .
4 9053 . 4 3 . o e, 184.1E.134.35% TCF
£y 4] " CRFE), 1E AT T L ASN TR 1

Top is session starl... bollom is session end T (1 P F}
1723, Lt

stzeted Fa 104.18.37 .36 3.1 1 Asslieasisn Cata [TES sagmaat af o
: o . () 186, 12,37 46 MM TSl 1H]
. y - 1), ECTR=a1LF 3,36 ATRINAM 18 AR.DT A z :

152 &1,
172.2%.1.20
172,291,230

¥ ITEA.0L0 2 17108 i 2] - @ATER [AX] FagedbaR0
i (EFRF B) el g} S L it a1
4 [T PPN 3 atected Payloed (R3] F Asalicatian Lata
<2 akacted Paydosd (03], DCIC=ALE) . 172.23.0. 0% Axalicatian Cata

- i 171.38.1.20 £LIC] d Paylosd (EDa] 184,18, 124. 86

Measurement TCP QUIC QuIc RAW Difference
Advantage
13 1 12
679 s77 102 | 15% QUIC Fewer Packets

Time span, seconds 2.371 1.317 1.054 44% QUIC Significantly Better Time, seconds
Average pps 286 438 152 ' 53% QUIC Better Average pps

Average packet size 899 1156 257 - 29% QUIC Larger packet size

610673 667225 -56552 [-9% TCP Fewer Bytes
2060000 4053000 1993000 97% QUIC Better Throughput bits/s

Benchmark Page https://cloudflare-quic.com

Single Object One Video Load

UIC RAW
Measurement TCP QUIC Q Mixed Results TCP HTTP/2 Difference
Advantage

Sessions 1 1 0 0% Same Sessions

Packets 1985 2123 -138 |:- -7% TCP Fewer Packets

Time span, seconds 40.332 40.241 0.091 il 0% QUIC Marginally Better Time
Average pps 49 53 4 .:l 7% QUIC Better Average pps
Average packet size 1089 1192 103 B 9% QUIC Larger packet size

Bytes 2161738 2530541 -368803 |:— -17% TCP Fewer Bytes

Average bits/s 428000 503000 75000 I 18% QUIC Better Throughput bits/s

Full Page Load With Multiple Objects

UIC RAW
Measurement TCP QUIC Q Advantage QUIC HTTP/3 Difference
Advantage

Sessions 13 1 12 92% Less Sessions

Packets 679 577 102 15% QUIC Fewer Packets

Time span, seconds 2.371 1.317 1.054 44% QUIC Significantly Better Time, seconds
Average pps 286 438 152 53% QUIC Better Average pps

Average packet size 899 1156 257 29% QUIC Larger packet size

Bytes 610673 667225 -56552 -9% TCP Fewer Bytes

Average bits/s 2060000 4053000 1993000 97%| QUIC Better Throughput bits/s

Triple+ Web Performance

at a Price...

What Will

You Do?

50 yvear old TCP’s
l[diosyncrasies

SOME REASONS FOR QUIC

TCP Data Duplication Details

m Time/Sequence Graph
320000 — f
s it T j
300000 — |
[
retransmissions of
280000 — | subsequent
packets
270000 —
260000 —) Ta,
B
250000 — |
s I—H\ 2) Dozens, of.
230000 — of the same two.
packets
220000 —
210000 —
200000 —

15

70000 -
60000

50000

TCP Window

Significant Data Dupllcatlon

\

L

T
e
|

S § i I | | ALY

40000

30000

20000 -
10000 —————

70000 -

OSACK3

60000

B SACK2

50000

40000 |

30000 +

20000 -

10000 -

@ SACK1

| I .

3000000

IV I

2500000

Packet loss initiates ineffective

Actual vs. Good Data Transmlssion

——Total Data |

2000000

recovery causing significant

/Wazﬁ
-

— Good Data |

1500000

1000000 +—

additional overhead

Bandwidthy _——

500000

1570
1550
1530

1510

1490
1470

~— Required J N Tt
Ba ndwidth

__Timespan

1450 1—
1430 —

1410
1390

16

Data Duplication & App Processing

Sequence ; Sequence
ber[B] Time/Sequence Graph ber(B]
450000 — e S 4
4 P 7 |
5 i 400000 — |
400000 — R 4
] " | "W -
. Processing ._{ e——— ~M§} 350000
3 . Similar
N 0000071 1 transaction.in
300000 — _ 1/18,the time.
3 WMWW'M i i
b 7 cause slowed,p - L8
250000 — and greater idth consumption. i
] 1)
o 200000 — |
200000 — 4 |
. =l
150000 — R j
100000 — 100000 —
50000 — m_/)
? T T T T T T T P T " T T T T T " T T T " T " T T T T T T T 771" T T T[T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 5 10

TCP — Packet Loss — Poor Recovery

41991 > https [ACK] Seq=1292614730 Ack=1606373238 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606381036 Ack=1292614730 Win=64316 Len=1380 5

https > 41991 [PSH. ACK] Seq=1606382416 Ack=1292614730 Win=64316 Len=848 Ack-SLE Hole Size

41991 > https [ACK] Seq=1292614730 Ack=1606375466 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606383264 Ack=1292614730 Win-64316 Len=1380 1303245196 should be 1380
> 41991 [PSH ACK] Seq:l_‘l__6_0_6_3_&_4_6_44| ACk=1797614730 Win= b451b Lews8438

1292614730 Ack=1606377960 Wi
606385492 ACI\-14‘9: 14/

https [
1

)

Selective Ack Numbers
are mis-calculated

b1 S6q=1292614770 Ack—1606384644 Win=65535 Len0 Ack-SLE
, ACK] Seq=1600892176 Ack=1292614730 Win=64316 Len=1380 oy

. ACK] Seq=1606393556 Ack=1292614730 Win=64316 Len—848 U

] 5e=1292614730 Acm 1606385492 Wi Last g od ACK have been

ACK] Seq 1606394404] ACK=1292614730 Wi N=b¥3T0_Lah: :ii[! T Y—/—— Y— |

SLE-SLR hole
correct at 848

[ACK] Seq=1292614730 ACk+1606395518|Win=65535 Len=0 Recovery

https [PSH, ACK] Seq=1606395518 Ack=1202614730 Win=64316 Len=1114

https > 41991 [PSH. ACK] Seq=1606396632 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH. ACK] Seq=1606398012 Ack=1292614730 Win=64316 Len=848

https > 41991 [PSH. ACK] Seq=1606398860 Ack=1292614730 Win=64316 Len=1380 Nevertheless, recovery occurs
https > 41991 [PSH. ACK] Seq=1606400240 Ack=1292614730 Win=64316 Len=848]
https > 41991 [PSH. ACK] Seq=1606401088 Ack=1292614730 Win=64316 Len=1380 over three seconds later!
https > 41991 [PSH. ACK] Seq=1606402468 Ack=1292614730 Win=64316 Len=848

https 41991 [PSH, ACK] Seq=1606403316 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH. ACK] Seq=1606404696 Ack=1292614730 Win=64316 Len=848 This behavior repeats
41991 > https [ACK] Seq=1292614730 Ack=1606398012 Win=65535 Len=0 -
https > 41991 [PSH, ACK] Seq-1606405544 Ack=1292614730 Win=64316 Len=1380 throughout the session.
https > 41991 [PSH, ACK] Seq=1606406924 Ack=1292614730 Win=64316 Len=848

41991 > https [ACK] Seq=1292614730 Ack=1606400240 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606407772 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH, ACK] Seq=1606409152 Ack=1292614730 Win=64316 Len-848

41991 > https [ACK] Seq=1292614730 Ack=1606402468 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606410000 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH, ACK] Seq=1606411380 Ack=1292614730 Win=64316 Len=848

41991 > https [ACK] Seq=1292614730 Ack=1606404696 Win=65535 Len=0

https > 41991 [PSH, ACK] Seq=1606412228 Ack=1292614730 Win=64316 Len=1380

https > 41991 [PSH, ACK] Seq=1606413608 Ack=1292614730 Win=64316 Len—848

s o A o v s N v O N v N O v v e

41991

https [ACK] Seq=1292614730 Ack=1606405544 Win=64687 Len=0

HOP/TTL Incongruity “our own man in the middle”

Identification: Ox36co(140257D
Flags: 0x04 (Don't Fragment)
Fragment offset: O
Time to Tiwe:
Protocol @ TCP Qw0
Header checksum: Cxe3b
Source: 214.13.192.184 (2
Destination: 150.17F7.195.220
Transmission Control Protocol, Src

Identification: Gxﬂ?dfq
Flags: 0«04 (Don't Fragment k

correct]
3.192.184)
0.177.195.220)

rt: 41991 (41991), : 443 (443), Seq: O, Ack: 1454884, Len: O

Fragment offset: O Incongruent Conaruent TTL Congruent
Time to 1ive: @D €— TIL & . Fragment ID
Protocol: TCP (CwOa) Fragment 1D Frugressinn

Header checksum: Oxlc2d [correct]
Source: 214.13.192.184 (214.13.19

917, Dst Port: 443 (4437, Seq: O, Ack: 1454884, Len: O

Identification: Ox36c im
Flags: 0O=04 (Don't Fagment)
Fragment offset:

;:;:E;;I‘ﬁ;;%ai Indicates "our own man in the middle" potential
Header checksum: Oxe3bl [correct] {FirEWﬂ", Wan Dptimizer, Load Bﬂlﬂnﬂer}

Source: 214.13.192.184 (214.13.192.184)
Destination: 150.177.195.220 (150.177.195.220)
¥ Transmission Control Protocol, Src Port: 41991 (419917, Dst Port: 443 (4430, Seqg: O, Ack: 1457378, Len: ©

CP — Session Performance

o0

o R B ey g A g - e e g A P S wu-t S

30000

an000

30000

s

40000

: i*‘!illi11515!51!liII?!!!!!!Eiiélii!iIi!ik!!ii!!i!!i!!!i I T I T T

40000 T _b__d_,irqqugzﬂig 'thFlﬂlnﬂllHHFlﬂlﬂﬁil'
Gl ans — | el 35 RBCONGN 1o recoyer

el ———— - =
—
P o——
—
|

e s B B B I
el iil!ilﬂﬂ | (L | iif! 1] ll {“7
L0000 TIiA NI mﬂmntﬂhmﬁm.ﬁ#mmﬁmmh i |¢|||| i"Hﬂﬂ“l |

About 800 sacond analysis.
smm‘ e e : ad

!a:5!|!lli!l:5#1ttltté!E!!!!!!&!I!!!ilE!eillliiii!!iiiliiiilii!*i!iiI!IIIIi;ilI[III!IltlIIiiIi!!!il!]il]ﬁli!llili!!!i!i!iiliﬁil

NAT, PAT or Route Changes Impact on Sessions

Instability of routing metrics

BGP Activity Summary

20000
——Total Churn
——Internal Update Churn
—+*—External Update Churn
——Internal Withdraw Churn
A—External Withoraw Churn
10000 -

Total Churn

21

QUIC Decrypted

‘ quic libre tls key test.pcapng - a X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am 2@ RC Qe EF S =QQQTE
n |quic.5tream.stream_id ==0 | = | v] q
No. T Since St Delta Source Destination Protocol Length Info [
— 2637 13.099943000 ©.043996000 192.168.0.211 quic2.end2endspeed.com QUIC 1292 Initial, DCID=79a35af38d8@a3ff, PKN: 1, PADDING, PING, CRYPTO, CRYPTO, CRYPTO, CRYPTO, PING, CRYPTO, PADDING

2640 13.165631000 ©.026792000 quic2.end2endspeed.com 192.168.0.211 QUIC 1294 Handshake, SCID=00000000000010097ec9e4bBcPa22578e354957c, PKN: @, CRYPTO, CRYPTO

2641 13.166051000 ©.000420000 quic2.end2endspeed.com 192.168.0.211 QUIC 1294 Handshake, SCID=P0200000000010097ec9e4b8c0a22578e354957c, PKN: 1, CRYPTO

2642 13.166051000 ©.000000000 quic2.end2endspeed.com 192.168.0.211 QUIC 1288 Handshake, SCID=00200000000010097ec9e4b8c@a22578e354957c, PKN: 2, CRYPTO

2643 13.166500000 ©0.000449000 192.168.0.211 quic2.end2endspeed.com QUIC 93 Handshake, DCID=000000000B0010097ec9e4b8cPa22578e354957¢c, PKN: 2, ACK

2644 13.167734000 ©.001234000 192.168.0.211 quic2.end2endspeed.com QUIC 94 Handshake, DCID=00000000000010097ec9e4b8c@a22578e354957¢, PKN: 3, ACK

2648 13.223102000 ©0.021612000 quic2.end2endspeed.com 192.168.0.211 QUIC 1123 Handshake, SCID=00000000000010097ec9e4b8c0a22578e354957c, PKN: 3, CRYPTO, CRYPTO, CRYPTO

2649 13,225165000 ©.002063000 192.168.0.211 quic2.end2endspeed.com QUIC 94 Handshake, DCID=00000000000010097ec9e4b8c0a22578e354957c, PKN: 4, ACK

2650 13,225969000 ©.000804000 192.168.0.211 quic2.end2endspeed.com QUIC 127 Handshake, DCID=00000000000010097ec9e4b8cPa22578e354957c, PKN: 5, CRYPTO

2651 13.226235000 ©.000266000 192.168.0.211 quic2.end2endspeed.com HTTP3 125 Protected Payload (KP@), DCID=00000000000010097ec9e4b8ca22578e354957¢c, PKN: 6, STREAM(2), SETTINGS

2652 13.226678000 ©.000443000 192.168.0.211 quic2.end2endspeed.com HTTP3 494 Protected Payload (KP@), DCID=000000000000100972Cc9e4b8cRa22578e354957¢c, PKN: 7, STREAM(2), PRIORITY_UPDATE, STREAM(®), HE

2658 13.287632000 ©.0823162000 quic2.end2endspeed.com 192.168.0.211 HTTP3 288 Protected Payload (KP@), PKN: @, CRYPTO, CRYPTO, DONE, NCI, STREAM(3), STREAM(3), SETTINGS

2659 13.287632000 ©.000000000 quic2.end2endspeed.com 192.168.0.211 HTTP3 1292 Protected Payload (KP@), PKN: 1, STREAM(@), HEADERS

2660 13.287632000 0.000000000 quic2.end2endspeed.com 192.168.0.211 QUIC 1292 Protected Payload (KP@), PKN: 2, STREAM(®)

2661 13.287632000 0.000000000 quic2.end2endspeed.com 192.168.0.211 QUIC 1292 Protected Payload (KP@), PKN: 3, STREAM(®)

NERD 12 7901720060 D DAACAIAAR Andr)Y anddlandenaad Fam 107 18Q¢ A 211 NNTe 1907 Dnntartad Daulaad /DA DA A CTDCAM/ N\

v Extension: quic_transport_parameters (len=102) 00 77 00 00 00 00 00 10 @} y
Type: quic_transport_parameters (57) 39 90 66 04 04 80 83 00 h3
Length: 102 95 04 80 01 @0 08 06 04 - - - - @

> Parameter: initial_max_data (len=4) 8585216
> Parameter: initial max_streams_uni (len=1) 3
> Parameter: initial_max_streams_bidi (len=2) 128

> Parameter: initial_max_stream_data_bidi_local (len=4) 65536 d2 be 94 04 80 21 4e 58 P-\@:,
> Parameter: initial max_stream_data_bidi_remote (len=4) 65536 of c7 00 ©@ Of c3 VY ©5 I@}c‘.,
> Parameter: initial max_stream_data uni (len=4) 65536 la a@ 03 82 @1 82 82 12 60--20- -
Parameter: max_idle_timeout (len=4) 65000 ms 44 29 b3 22 @b c3 ef f9 0+
e

> Parameter: max_udp_payload_size (len=4) 65527

> Parameter: active_connection_id_limit (len=1) 2

> Parameter: GREASE (len=1) 25

> Parameter: ack_delay_exponent (len=1)

> Parameter: original_destination_connection_id (len=8)
> Parameter: initial_source_connection_id (len=28)

> Parameter: stateless_reset_token (len=16)

@a 13 @d 4c 65 74 27 73 1-@---U:
31 @b 30 89 @6 03 55 @4 Encrypt
ed 32 33 30 34 31 36 30 <--R30- -
32 33 30 37 31 35 30 30 034347
1f 3@ 1d 06 @3 55 04 @3 3433Z0!1
65 6e 64 32 65 6e 64 73 c-quic2.

~ CRYPTO 30 82 @1 22 30 od 96 @9 peed.com
Frame Type: CRYPTO (©x0000000000000006) 01 ©5 00 83 82 91 ©f 00 ¥eHe oo
Offset: 125 00 bo ©7 19 4a 30 33 8b Q-
Length: 926 82 d2 38 1c ff b6 35 c6 y3_-t
Crypto Data 23 b6 2e f6 6a ae e2 ad : cQ
~ TLSv1.3 Record Layer: Handshake Protocol: Certificate (fragment) Eg gg Sg gz gg gg gg gg '02 z

Handshake Protocol: Certificate (fragment)
Reassembled Handshake Message in frame: 2648

| Frame (1294 bytes) Decrypted QUIC (99 bytes) Decrypted QUIC (1060 bytes)

‘ Wireshark - 1/0 Graphs - quic libre tls key test.pcapng — a X

Wireshark I/O Graphs: quic libre tls key test.pcapng

300000 -
250000 -
200000 -

w

1S

o

o

o 150000 -

8

&
100000 -

50000 -
/
0 C ~ 1 I
0 10 20 30
Time (s)
No packets in interval (9.4s).

Enabled Graph Name Display Filter Color Style Y Axis
O All Packets . Line Bytes
O TCP Errors tcp.analysis.flags . Bar Bytes
] Filtered packets quic.stream.stream_id == 64 . Line Bytes
2 Filtered quic.stream.stream_id == 60 . Line Bytes
] Filtered packets quic.stream.stream_id == 56 . Line Bytes
] Filtered packets quic.stream.stream_id == 48 . Line Bytes
(] Filtered packets quic.stream.stream_id == 74 . Line Bytes
] Filtered packets quic.stream.stream_id == 84 . Line Bytes
[] Filtered packets quic.stream.stream_id == 52 Line Bytes

+ = th E‘g Mouse © drags (0) zooms Interval 200ms ~ [Time of day O Log scale B Automatic Update Reset

Save As... Copy Copy from Close Help

Wireshark I/O Graphs: quic libre tls key test.pcapng

Bytes/200 ms

How to identify existing QUIC Users

i Investigation

HOPZERO &

Find or filter... ®x T~

> I o Perspective: Outgoing ~ Protocol: UDP = | @ - Options ~

MEBRASK] % +] A RHUUE BSLANL
B JTOLEDD! S ELEvELAND ° 3 am |
J ELREX o ELKO SALT LAKE CITY pecr CANTON N NEW YORK
SSAN FRANCSCO @ v EVANSILLE R
(O] 3 +
= 05 ANGELES -
- o ‘ ®
4
I GOOGLE I Ia OPEMDNS l Google LLCI |I Cisco OpenDNS, LLC #@s Map metric: S-ASOrg =
C-Type S-Type C-bps S-bps C-Bytes S-Bytes Sessions C-DNS C-Fraud Low Hops High Hops Hop Jitter S-DNS C-City C-Country S-City S-Country
1known Business 96412 kbps 83.00bps 3141 MB L 24 26 2 Unknown United State:
Tknown Business 1.46 Mbps 267.00 bps 7.44 MB 26 26 0 Unknown United State:
Tknown Business 1.26 Mbps 112 kbps 3.07 MB 0 25 26 1 Unknown United State:
Unknown 4.01 Mbps 200 kbps 272 MB L] 0 26 26 0 Unknown Unknown
Business 1.71 kbps 0.00 bps 2.67 MB 0 24 26 2 J1e100.net W United State:
Business 3311 kbps 19.00 bps 240 MB 0 39 52 13 United State:
Tknown Business 1.25 kbps 0.00 bps 1.97 MB 0 25 41 16 United State:
Tknown Business 13.39 Mbps 1355 kbps 1.34 MB 0 24 24 0 United State:
Tknown Business 52.80 kb 3.34 ¥ United State:

Business United State:

;

Business o United State:
Business o United State:
Tknown Business 3.23 Mbps 1400 kbps 31319 kE https 0 443 1 &5 United State:
Tknown Business 12588 kbps 1.58 kbps 21570 kB https 0 443 2 &5 7.1e100.net Unknown United State:
Business 5149 kbps 690.00 bps 206.30 kB https 0 443 3 &5 85.147 7.1e100.net United State:
Business 4.08 kbps 68.00 bps 163.70 kB https 0 4413 2 o 36.93 United State:
Pucinaszc A7 A3 bhne fAR NN hne 14ANTR R -] httne L | Q] 4 A n a5 An 15 a5 10A 3 121NN nat Hmited State

What to do next?

A.) Update Router-Firewall
B.) Use QUIC carefully
C.) Join Cogent.Community QUIC Protocol Space

A.) Inform IT Security about QUIC working, or not.
B.) Careful they don’t “shoot the messenger”

A.) Learn tools to identify QUIC
B.) Become Certified in QUIC https://Cogent.Community

A.) Let us know about QUIC supported products
B.) Tell us about new QUIC products coming
C.) Sponsor and participate in Cogent.Community QUIC

https://securityinstitute.com/

Triple+ Web Performance

at a Price...

What Will

You Do?

Decrypting TLS & QUIC Headers

To record QUIC session information including encryption keys, you can use the SSLKEYLOGFILE environment variable. This
method is supported by many TLS libraries, such as OpenSSL and BoringSSL, which are often used in QUIC implementations. The
SSLKEYLOGFILE environment variable specifies a file path where the TLS session secrets will be written, enabling decryption of
QUIC traffic for analysis and diagnostic purposes.

Here's how to use the SSLKEYLOGFILE method:

%lLSJ(IeCti the SSLKEYLOGFILE environment variable to the desired file path before starting the client or server application that uses

For Linux and macOS:

javascript

export SSLKEYLOGFILE=/path/to/your/sslkeylogfile.txt
For Windows:

vbnet

set SSLKEYLOGFILE=C:\path\to\your\sslkeylogfile.txt

2.Run the client or server application that uses QUIC. The application will write the TLS session keys to the specified file as they
are established.

3.Use the collected keys to decrypt and analyze the QUIC traffic. Tools like Wireshark can use these keys to decode encrypted
QUIC streams in captured packet data.

Remember that handling encryption keys securely is critical, as exposing these keys can compromise the security and privacy of
the QUIC sessions. Only use this method for diagnostic purposes and with the appropriate permissions, and always follow best
practices for handling sensitive data.

*Some Chat GPT helped find and organize some of this text.

QUIC Improvements over TCP

Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the processing of
subsequent packets in the same data stream, causing increased latency and reduced performance. QUIC solves the head-of-
line blocking problem more effectively than TCP by employing the following techniques:

1.Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is independent of the
others. This means that if a packet is lost or delayed in one stream, it does not affect the other streams. In contrast, TCP
treats all data within a connection as a single, ordered byte stream, which means that any packet loss or delay can block the

entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather than at the
connection level, as in TCP. This enables QUIC to recover from packet losses in one stream without affecting other streams,

further reducing the impact of head-of-line blocking.

3.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not rely on a single,
global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and retransmit lost packets without
waiting for a full round-trip time, as is typically the case with TCP.

4 .Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about received packets, as
well as any gaps in the sequence of received packets. This allows the sender to quickly identify lost packets and retransmit

them, reducing the impact of head-of-line blocking.

By using these techniques, QUIC effectively mitigates the head-of-line blocking problem, leading to better performance,
reduced latency, and improved user experience, especially in environments with high packet loss or network congestion.

O-RTT Data Request Response Size

In a O-RTT (Zero Round-Trip Time) session, the amount of data that can be sent in the initial request depends
on the server's maximum allowed O-RTT data size, which can vary depending on the server's configuration
and preferences. There isn't a fixed theoretical capacity for all cases, as it depends on the server's specific
settings.

However, it's important to note that O-RTT data should generally be limited to a small amount, as sending
large amounts of data in the initial request could increase the risk of replay attacks. The server must enforce
proper anti-replay measures and limit the use of O-RTT data to mitigate this risk.

In practice, O-RTT data is typically used for non-sensitive, idempotent requests like HTTP GET requests or
other actions that can be safely retried without causing unintended side effects. This ensures that even if a
replay attack occurs, the consequences are minimal.

In TLS 1.3, the "max_early data_size" parameter within the "NewSessionTicket" message specifies the
maximum amount of 0-RTT data a client can send during a O-RTT session. The "max_early data_size" is a 32-
bit unsigned integer, so the maximum value that can be represented is 2232 - 1 bytes, which is equal to
4,294,967,295 bytes or approximately 4 GiB.

However, it's important to remember that setting such a high limit for 0-RTT data is not recommended, as it
could increase the risk of replay attacks. In practice, servers are likely to set much smaller limits to ensure
security and protect against potential abuse.

QUIC Frame Concept

The QUIC protocol uses a modular and extensible framing mechanism, which allows for the efficient encoding of
gffeé‘entlty es of data while also providing flexibility for future enhancements. Some common types of frames in
UIC include:

STREAM frames: These frames carry application data between endpoints and are used for reliable, in-order
transmission of data within a specific QUIC stream.

ACK frames: These frames are sent by the receiving endpoint to acknowledge the receipt of one or more packets,
indicating the packets' sequence numbers and any gaps (i.e., lost or delayed packets).

MAX_DATA and MAX_STREAM_DATA frames: These frames are used for flow control, with MAX_ DATA controlling
the overall amount of data that can be sent across all streams and MAX_STREAM_DATA controlling the amount of
data that can be sent within a specific stream.

RESET_STREAM frames: These frames are sent by an endpoint to indicate that it wants to abruptly terminate a
stream without completing the transmission of all data.

CONNECTION_CLOSE and APPLICATION_CLOSE frames: These frames are used to signal the termination of a QUIC
connection, either due to an error or a graceful shutdown initiated by the application.

PING frames: These frames are used to test the connection's liveness and to keep the connection alive in the
presence of idle timeouts.

By using frames to carry various types of information, QUIC enables efficient, flexible, and extensible
communication between endpoints while maintaining performance and security.

Introduction to QUIC for Network and Security Technologists

QUIC (Quick UDP Internet Connections) is a transport layer protocol started by Jim Roskind at Google (Now AWS) to improve the security,
performance, and reliability of web connections. QUIC uses UDP as its transport protocol, providing faster connection establishment,
reduced latency, and built-in encryption.

Internet Engineering Task Force IETF changed its name to QUIC — no acronym to lose its Google roots. Greatly enhancing and integrating
with TCP features.

Encryption and security: QUIC incorporates Transport Layer Security (TLS) 1.3, ensuring all transmitted data is encrypted by default. This
enhances security compared to older HTTP/2 connections, which do not always require encryption.

Faster connection establishment: QUIC reduces the number of round trips required to establish a secure connection, resulting in a faster
and more efficient process compared to traditional TCP/TLS connections.

0-RTT connection resumption: QUIC supports O-RTT (Zero Round-Trip Time) connection resumption, allowing for faster reconnections
bet?/veen cllﬁnts and servers that have previously communicated. This feature should be implemented with caution, as it can pose a risk of
replay attacks.

Connection migration: QUIC allows for connection migration, enabling a client to change its IP address without losing the connection. This
feature improves the stability of secure connections in mobile or unstable network environments.

Multiplexed streams and head-of-line blocking: QUIC's support for multiplexed streams can help mitigate head-of-line blocking, enhancing
the performance and security of connections by reducing latency.

Forward error correction: QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing the reliability and
security of connections.

Potential vulnerabilities: While QUIC is designed with security in mind, potential vulnerabilities exist, such as 0-RTT vulnerabilities, key
update attacks, DoS attacks, Connection ID privacy concerns, and implementation flaws. Awareness and mitigation strategies are essential
for ensuring optimal security.

Limited adoption and compatibility: QUIC is becoming widely adopted, with more implementations monthly. Network and security
technologists should be prepared to work with both QUIC-enabled and non-QUIC environments.

QUIC’s Top 5 Security Vulnerabilities

0-RTT vulnerabilities: The O-RTT (Zero Round-Trip Time) feature can make QUIC connections more susceptible to
replay attacks. An attacker may intercept and replay a O-RTT connection attempt to gain unauthorized access. To
mitigate this risk, servers should enforce proper anti-replay measures and limit the use of 0O-RTT data.

Key update attacks: QUIC's key update mechanism, which periodically updates encryption keys, could be exploited
by attackers to force clients or servers to use weak or compromised keys. This issue can be addressed by
implementing proper key management practices and ensuring that keys are securely generated and stored.

Denial of Service (DoS) attacks: QUIC's reliance on the User Datagram Protocol (UDP) could make it more
susceptible to DoS attacks. Attackers might flood a server with malformed or large packets to exhaust its resources.
Server operators should employ rate limiting, filtering, and other techniques to prevent such attacks.

Connection ID privacy concerns: QUIC's use of Connection IDs to maintain sessions can improve privacy but may
also be exploited by attackers to track users across different connections. Ensuring that Connection IDs are
generated and managed securely can help minimize this risk.

Implementation flaws: As with any protocol, security issues may arise due to flaws in the implementation of QUIC
by software developers. To address this, it is essential to use well-tested and regularly updated libraries, adhere to
best practices, and perform thorough security audits and testing of QUIC-enabled applications.

QUIC: Top 10 Things to Know

Encryption by default: QUIC incorporates built-in encryption using Transport Layer Security (TLS) 1.3, ensuring that
all data transmitted is secure by default. This is an improvement over HTTP/2, which does not require encryption.

Connection establishment: QUIC reduces the number of round trips required to establish a secure connection,
speeding up the process and making it more efficient.

0-RTT connection resumption: QUIC allows for O-RTT ﬁero Round-Trip Time) connection resumption, enabling
faster reconnections between clients and servers that have previously communicated. This can, however, pose a
risk of replay attacks if not properly implemented.

Improved privacy: QUIC's connection identifiers do not reveal user IP addresses, making it harder for
eavesdroppers to track users across different connections and improving privacy.

Resistance to replay attacks: QUIC has built-in mechanisms to counter replay attacks, but proper implementation
is essential to ensure the security of the protocol.

Connection migration: QUIC supports connection migration, allowing a client to change its IP address without
losing the connection. This can help maintain secure connections, even in mobile or unstable network
environments.

Forward error correction: QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing
reliability and security.

Reduced impact of head-of-line blocking: QUIC's multiplexed streams can help mitigate head-of-line blocking,
improving the performance and security of connections.

Key QUIC vs. TCP Improvements

Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the
processing of subsequent packets in the same data stream, causing increased latency and reduced
performance. QUIC solves the head-of-line blocking problem more effectively than TCP by employing the
following techniques:

1.Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is
independent of the others. This means that if a packet is lost or delayed in one stream, it does not affect the
other streams. In contrast, TCP treats all data within a connection as a single, ordered byte stream, which
means that any packet loss or delay can block the entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather
than at the connection level, as in TCP. This enables QUIC to recover from packet losses in one stream
without affecting other streams, further reducing the impact of head-of-line blocking.

3.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not
rely on a single, global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and
retransmit lost packets without waiting for a full round-trip time, as is typically the case with TCP.

4.Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about
received packets, as well as any gaps in the sequence of received packets. This allows the sender to quickly
identify lost packets and retransmit them, reducing the impact of head-of-line blocking.

QUIC Encryption Explained vs TCP

QUIC packet header encryption is a mechanism that protects certain parts of the QUIC packet header from being observed or modified by third
parties, such as middleboxes or eavesdropé)ers. This enhances privacy and security compared to traditional transport protocols like TCP, where
some header information remains exposed.

In QUIC, the packet payload and certain parts of the header are encrypted together using the same encryption keys. The payload is encrypted
using modern cryptographic algorithms like AES-GCM or ChaCha20-Poly1305, which also provide authentication.

Not all parts of the QUIC header are encrypted. The packet number, for example, remains in the clear. The reason is to allow for better handling of
packet loss and reordering, as the packet number helps identify which packets have been received and which ones are still missing. QUIC:

1.Encrypts the payload: The payload data (e.g., application data) is encrypted using a symmetric key negotiated during the QUIC handshake.

2.Protect specific header fields: QUIC protects certain header fields, such as the Key Phase, Spin Bit, and some reserved bits, using a technique
called "header protection."” This is done by generating a header protection mask based on the packet encryption key and the unprotected header.

3.Apply the header protection mask: The header protection mask is XORed with the specific header fields that need to be protected. This process
encrypts these fields and prevents them from being observed or modified by third parties.

4.QUIC uses TLS for header encryption: The header protection mechanism is built into the QUICO‘orotocoI itself. As a result, there's no "second
encryption" layer for the header compared to the payload. The encryption keys for both payload and header protection are derived from the
same initial secret negotiated during the QUIC handshake.

5.QUIC uses per packet encryption vs. TCP Stream-based enchption: When TCP is combined with TLS, it provides stream-based encryption, which
means that the entire data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet
loss or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

6.TCP has Exposed headers: In, some header information remains exposed, which can potentially be exploited by attackers or used for network
analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

7.TCP does not natively support connection migration: If a user changes their network connection (e.g., swjt'ching from Wi-Fi to cellular data), the
gg(lstmg_ TCP connection/s must be terminated, and a new connection needs to be established, causing additional latency and potential
Isruptions.

QUIC vs. TCP Encryption

Per-packet encryption: QUIC encrypts every packet individually with packet numbers in the clear. This allows for better handling
of ,oacket loss and reordering compared to TCP. QUIC uses modern cryptographic algorithms such as AES-GCM or ChaCha20-
Poly1305 for encryption and authentication.

Packet header protection: QUIC also protects packet headers from being observed or modified by third parties. This enhances
privacy and security while preventing potential attacks that could exploit exposed header information.

Connection migration: QUIC supports connection migration, which means that a connection can be transferred between IP
addresses without breaking the connection. This can be useful in cases of network changes or mObllltJ (e.g., when a user
switches c1§|rom Wi-Fi to cellular data). Per-packet encryption enables this feature, as packets can be independently decrypted and
processed.

TCP encryption (with TLS):

Protocol: TCP is built on top of IP and provides a reliable, ordered, and error-checked delivery of data between applications. TCP
is the foundation for many application-level protocols, including HTTP, HTTPS, and FTP.

Stream-based encryption: When TCP is combined with TLS, it provides stream-based encryption, which means that the entire
data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet loss
or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

Exposed headers: In TCP, some header information remains exposed, which can potentially be exploited by attackers or used for
network analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

Connection migration limitations: TCP does not natively support connection migration. If a user changes their network _
connection (e.g., switching from Wi-Fi to cellular data), the existing TCP connection must be terminated, and a new connection
needs to be established, causing additional latency and potential disruptions.

QUIC Transport Protocol
IETF rfc-9000 & related rfcs

Ennm{nnnECTlnm
CONNECTION-MICRATION
FORWARD-ERROR-CORRECTION

FmeALLW E EEE.;‘JEE
2quic HROUC P U Tsrream
-Emnrs-::: NC PT|0N:LFTE§FNE$

A |
SvN—ACI:D :":’ CYCLGUDFL}JL“E
REBUFFERE, sr ﬂNcEsTmm CONTROL
DATACRAM® & a
EXPERIMENT O V , OB,
DELAY-TOLERANTL, BA N 4 sz'r;
TRANSPGRT o zFo RCE

p
TChe® +':" “"IETF O CDNPERFQRMAMPTE%

- BROWSER-ENABLED =
o o s cgoc;LE"? s s, [
‘:f LINI‘E

YouTuBE
MDBILE EM?X
LATENCY-SPIN -ElT Yr NAT-REB Nr.
ProToCOL ‘b CONSOLIDATE

SEAHEHGﬁq“ Q-Low-LATENCY
c:, MIDDLEBOXES

PAEKET NUMBER
':F QRURAL-{JRBAN
0 SLOW-START
QUIC-55H

MNETWORK

Resources Connection & Live Streams

https://linkedin.com/in/billaderson

https://Cogent.Management/live

https://Cogent.Community

LIVE 5553

A i
STREAM | iiat

(

- Watch LiveStreams

https://linkedin.com/in/billaderson
https://cogent.management/live
https://cogent.community/

Coge NT ... clear, collaborative, insightful
powerfully persuasive, balanced, weighty, inclusive

IT Professional
E E Online Community
[m]::
- =

Topics Prof Assn’s Conferences SME’s Vendors
Content Videos LiveStream Collaboration

Root Cause Analysis Chat GPT Cybersecurity

QUIC Protocol Shark.Fest - WireShark Betty Dubois Q Hhitps://Cogent.Community X
ISSA / ISC2 Leadership Podcasts

Packetman007

	Slide 1: QUIC Protocol Overview for Enterprises With Packet Analysis
	Slide 2
	Slide 3
	Slide 4: SharkFest 2023
	Slide 5: QUIC Protocol Adoption
	Slide 6: Current Internet 1x QUIC 3x Faster
	Slide 7
	Slide 8
	Slide 9: QUIC Initial Connect – some headers exposed
	Slide 10: Why Middleboxes (Firewalls) Blind to QUIC?
	Slide 11
	Slide 12: Benchmark Results
	Slide 13
	Slide 14: 50 year old TCP’s Idiosyncrasies
	Slide 15: TCP Data Duplication Details
	Slide 16: Significant Data Duplication
	Slide 17: Data Duplication & App Processing
	Slide 18: TCP – Packet Loss – Poor Recovery
	Slide 19: HOP/TTL Incongruity “our own man in the middle”
	Slide 20: TCP – Session Performance
	Slide 21: NAT, PAT or Route Changes Impact on Sessions
	Slide 22: QUIC Decrypted
	Slide 23
	Slide 24
	Slide 25: How to identify existing QUIC Users
	Slide 26: UDP vs TCP vs QUIC Firewall
	Slide 27: What to do next?
	Slide 28
	Slide 29: Decrypting TLS & QUIC Headers
	Slide 30: QUIC Improvements over TCP
	Slide 31: 0-RTT Data Request Response Size
	Slide 32: QUIC Frame Concept
	Slide 33: Introduction to QUIC for Network and Security Technologists
	Slide 34: QUIC’s Top 5 Security Vulnerabilities
	Slide 35: QUIC: Top 10 Things to Know
	Slide 36: Key QUIC vs. TCP Improvements
	Slide 37: QUIC Encryption Explained vs TCP
	Slide 38: QUIC vs. TCP Encryption
	Slide 39
	Slide 40: Resources Connection & Live Streams
	Slide 41: Cogent … clear, collaborative, insightful powerfully persuasive, balanced, weighty, inclusive

