
QUIC Protocol Overview for Enterprises
With Packet Analysis

Bill.Alderson@Cogent.Management

Course PDF https://Cogent.Management/SharkFestQUIC

Packetman007

Every Major Client Web Browser
Chrome – Edge – Safari – Mozilla

Most Social Media Apps 90%+
Google – Facebook

Apple – Microsoft Server 2022+
CDN’s Cloudflare - Fastly

QUIC Protocol Is Rapidly
Replacing TCP!

SharkFest 2023

How QUIC Works And What Are The Security Concerns?

Why QUIC is Faster? Show You How To Perform “Packet Based Analysis”

Distillation of 1,000 IETF rfc-9000 and Related Standards Pages

Why Does It Lower Firewall Sessions 20 to 1 vs TCP?

How to Implement QUIC on Your App or Site - Fast!

QUIC Protocol Adoption

Current Internet 1x QUIC 3x Faster

QUIC
TLS

HTTP

QUIC
LATENCY
SAVINGS

Client Server

TCP

SSL

HTTP

Client Server

TCP Vs. QUIC
3x

Faster

300ms

100ms

100ms300ms

Basics of QUIC Protocol

Firewall Vendors
Tell Enterprises
“DENY” QUIC

Firewall Vendors that recommend Blocking QUIC UDP Port 443 in
Enterprise Networks

Cisco
PaloAlto Networks
CheckPoint
Fortinet

Each vendor provides specific instructions to block QUIC

▪ 2012 accidentally discovered… by Jim Roskind at

Google, now AWS

▪ Google, YouTube, Gmail, Facebook, Microsoft

Uber and Cloudflare already use QUIC!

▪ Distant or rural users receive the biggest

performance gain.

Web Performance

at a Price… An “Attractive Nuisance”
Until Enterprise Firewall
Improvements Secure Its Use

QUIC Initial Connect – some headers exposed

Enterprise firewall
improvements need to

identify well formed
QUIC packet headers

Improve and upgrade
SMB - Home router-
firewalls to identify

QUIC

Technically it is
possible upgrades can

be accomplished at
reasonable costs

New firewalls
worldwide might cost

$1 Trillion and take 10+
years

Why Middleboxes (Firewalls) Blind to QUIC?

Firewall
NAT
PAT

Load
Bal

Switch
Router Internet

50 TCP Sessions To
Get Full Web Page

50 x 100ms
= 5 Seconds

1 Session
To Get Full
Web Page

1 x 100ms
= 100ms

Plus 50 Gets

ServerC
lie

n
t

Multi-Media
Multi-Stream
Single Session

QUIC Combined 0-RTT HTTP TLS FEC w/Fast Mobile Reconnects

Discrete HTTP TCP SSL TLS Transactions

Firewall
TCP

STATE

Middleboxes (Firewalls) Blind to QUIC

Benchmarks
Prove It
Faster!

Benchmark Results

Triple+ Web Performance

at a Price…

What Will

You Do?

50 year old TCP’s
Idiosyncrasies
SOME REASONS FOR QUIC

TCP Data Duplication Details

15

Significant Data Duplication

16

Data Duplication & App Processing

17

TCP – Packet Loss – Poor Recovery

18

HOP/TTL Incongruity “our own man in the middle”

19

TCP – Session Performance

20

NAT, PAT or Route Changes Impact on Sessions

21

Instability of routing metrics

QUIC Decrypted

How to identify existing QUIC Users

UDP vs TCP vs
QUIC Firewall

QUIC uses UDP Port 443 to Servers

UDP firewall state is basic compared to TCP

QUIC encrypts everything above UDP except small part of
initial packets containing Link ID

Firewalls blind - cannot inspect protocol or content!

Apps- Browsers now, but many more uses coming

QUIC overcomes NAT issues

It only cares about Link ID’s, not Port#’s not IP’s

Sends large MTU initial packet sizes

What to do next?

Personal / Home: A.) Update Router-Firewall
 B.) Use QUIC carefully
 C.) Join Cogent.Community QUIC Protocol Space

Work / School: A.) Inform IT Security about QUIC working, or not.
 B.) Careful they don’t “shoot the messenger”

Security Pro's: A.) Learn tools to identify QUIC

 B.) Become Certified in QUIC https://Cogent.Community

Vendors: A.) Let us know about QUIC supported products
 B.) Tell us about new QUIC products coming
 C.) Sponsor and participate in Cogent.Community QUIC

https://securityinstitute.com/

Triple+ Web Performance

at a Price…

What Will

You Do?

Decrypting TLS & QUIC Headers
To record QUIC session information including encryption keys, you can use the SSLKEYLOGFILE environment variable. This
method is supported by many TLS libraries, such as OpenSSL and BoringSSL, which are often used in QUIC implementations. The
SSLKEYLOGFILE environment variable specifies a file path where the TLS session secrets will be written, enabling decryption of
QUIC traffic for analysis and diagnostic purposes.
Here's how to use the SSLKEYLOGFILE method:
1.Set the SSLKEYLOGFILE environment variable to the desired file path before starting the client or server application that uses
QUIC:
For Linux and macOS:
javascript
export SSLKEYLOGFILE=/path/to/your/sslkeylogfile.txt
For Windows:
vbnet
set SSLKEYLOGFILE=C:\path\to\your\sslkeylogfile.txt
2.Run the client or server application that uses QUIC. The application will write the TLS session keys to the specified file as they
are established.
3.Use the collected keys to decrypt and analyze the QUIC traffic. Tools like Wireshark can use these keys to decode encrypted
QUIC streams in captured packet data.
Remember that handling encryption keys securely is critical, as exposing these keys can compromise the security and privacy of
the QUIC sessions. Only use this method for diagnostic purposes and with the appropriate permissions, and always follow best
practices for handling sensitive data.

*Some Chat GPT helped find and organize some of this text.

QUIC Improvements over TCP
Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the processing of
subsequent packets in the same data stream, causing increased latency and reduced performance. QUIC solves the head-of-
line blocking problem more effectively than TCP by employing the following techniques:

1.Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is independent of the
others. This means that if a packet is lost or delayed in one stream, it does not affect the other streams. In contrast, TCP
treats all data within a connection as a single, ordered byte stream, which means that any packet loss or delay can block the
entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather than at the
connection level, as in TCP. This enables QUIC to recover from packet losses in one stream without affecting other streams,
further reducing the impact of head-of-line blocking.

3.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not rely on a single,
global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and retransmit lost packets without
waiting for a full round-trip time, as is typically the case with TCP.

4.Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about received packets, as
well as any gaps in the sequence of received packets. This allows the sender to quickly identify lost packets and retransmit
them, reducing the impact of head-of-line blocking.

By using these techniques, QUIC effectively mitigates the head-of-line blocking problem, leading to better performance,
reduced latency, and improved user experience, especially in environments with high packet loss or network congestion.

0-RTT Data Request Response Size
In a 0-RTT (Zero Round-Trip Time) session, the amount of data that can be sent in the initial request depends
on the server's maximum allowed 0-RTT data size, which can vary depending on the server's configuration
and preferences. There isn't a fixed theoretical capacity for all cases, as it depends on the server's specific
settings.

However, it's important to note that 0-RTT data should generally be limited to a small amount, as sending
large amounts of data in the initial request could increase the risk of replay attacks. The server must enforce
proper anti-replay measures and limit the use of 0-RTT data to mitigate this risk.

In practice, 0-RTT data is typically used for non-sensitive, idempotent requests like HTTP GET requests or
other actions that can be safely retried without causing unintended side effects. This ensures that even if a
replay attack occurs, the consequences are minimal.

In TLS 1.3, the "max_early_data_size" parameter within the "NewSessionTicket" message specifies the
maximum amount of 0-RTT data a client can send during a 0-RTT session. The "max_early_data_size" is a 32-
bit unsigned integer, so the maximum value that can be represented is 2^32 - 1 bytes, which is equal to
4,294,967,295 bytes or approximately 4 GiB.

However, it's important to remember that setting such a high limit for 0-RTT data is not recommended, as it
could increase the risk of replay attacks. In practice, servers are likely to set much smaller limits to ensure
security and protect against potential abuse.

QUIC Frame Concept
The QUIC protocol uses a modular and extensible framing mechanism, which allows for the efficient encoding of
different types of data while also providing flexibility for future enhancements. Some common types of frames in
QUIC include:

STREAM frames: These frames carry application data between endpoints and are used for reliable, in-order
transmission of data within a specific QUIC stream.

ACK frames: These frames are sent by the receiving endpoint to acknowledge the receipt of one or more packets,
indicating the packets' sequence numbers and any gaps (i.e., lost or delayed packets).

MAX_DATA and MAX_STREAM_DATA frames: These frames are used for flow control, with MAX_DATA controlling
the overall amount of data that can be sent across all streams and MAX_STREAM_DATA controlling the amount of
data that can be sent within a specific stream.

RESET_STREAM frames: These frames are sent by an endpoint to indicate that it wants to abruptly terminate a
stream without completing the transmission of all data.

CONNECTION_CLOSE and APPLICATION_CLOSE frames: These frames are used to signal the termination of a QUIC
connection, either due to an error or a graceful shutdown initiated by the application.

PING frames: These frames are used to test the connection's liveness and to keep the connection alive in the
presence of idle timeouts.

By using frames to carry various types of information, QUIC enables efficient, flexible, and extensible
communication between endpoints while maintaining performance and security.

Introduction to QUIC for Network and Security Technologists
QUIC (Quick UDP Internet Connections) is a transport layer protocol started by Jim Roskind at Google (Now AWS) to improve the security,
performance, and reliability of web connections. QUIC uses UDP as its transport protocol, providing faster connection establishment,
reduced latency, and built-in encryption.

Internet Engineering Task Force IETF changed its name to QUIC – no acronym to lose its Google roots. Greatly enhancing and integrating
with TCP features.

Encryption and security: QUIC incorporates Transport Layer Security (TLS) 1.3, ensuring all transmitted data is encrypted by default. This
enhances security compared to older HTTP/2 connections, which do not always require encryption.

Faster connection establishment: QUIC reduces the number of round trips required to establish a secure connection, resulting in a faster
and more efficient process compared to traditional TCP/TLS connections.

0-RTT connection resumption: QUIC supports 0-RTT (Zero Round-Trip Time) connection resumption, allowing for faster reconnections
between clients and servers that have previously communicated. This feature should be implemented with caution, as it can pose a risk of
replay attacks.

Connection migration: QUIC allows for connection migration, enabling a client to change its IP address without losing the connection. This
feature improves the stability of secure connections in mobile or unstable network environments.

Multiplexed streams and head-of-line blocking: QUIC's support for multiplexed streams can help mitigate head-of-line blocking, enhancing
the performance and security of connections by reducing latency.

Forward error correction: QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing the reliability and
security of connections.

Potential vulnerabilities: While QUIC is designed with security in mind, potential vulnerabilities exist, such as 0-RTT vulnerabilities, key
update attacks, DoS attacks, Connection ID privacy concerns, and implementation flaws. Awareness and mitigation strategies are essential
for ensuring optimal security.

Limited adoption and compatibility: QUIC is becoming widely adopted, with more implementations monthly. Network and security
technologists should be prepared to work with both QUIC-enabled and non-QUIC environments.

QUIC’s Top 5 Security Vulnerabilities
0-RTT vulnerabilities: The 0-RTT (Zero Round-Trip Time) feature can make QUIC connections more susceptible to
replay attacks. An attacker may intercept and replay a 0-RTT connection attempt to gain unauthorized access. To
mitigate this risk, servers should enforce proper anti-replay measures and limit the use of 0-RTT data.

Key update attacks: QUIC's key update mechanism, which periodically updates encryption keys, could be exploited
by attackers to force clients or servers to use weak or compromised keys. This issue can be addressed by
implementing proper key management practices and ensuring that keys are securely generated and stored.

Denial of Service (DoS) attacks: QUIC's reliance on the User Datagram Protocol (UDP) could make it more
susceptible to DoS attacks. Attackers might flood a server with malformed or large packets to exhaust its resources.
Server operators should employ rate limiting, filtering, and other techniques to prevent such attacks.

Connection ID privacy concerns: QUIC's use of Connection IDs to maintain sessions can improve privacy but may
also be exploited by attackers to track users across different connections. Ensuring that Connection IDs are
generated and managed securely can help minimize this risk.

Implementation flaws: As with any protocol, security issues may arise due to flaws in the implementation of QUIC
by software developers. To address this, it is essential to use well-tested and regularly updated libraries, adhere to
best practices, and perform thorough security audits and testing of QUIC-enabled applications.

QUIC: Top 10 Things to Know
Encryption by default: QUIC incorporates built-in encryption using Transport Layer Security (TLS) 1.3, ensuring that
all data transmitted is secure by default. This is an improvement over HTTP/2, which does not require encryption.

Connection establishment: QUIC reduces the number of round trips required to establish a secure connection,
speeding up the process and making it more efficient.

0-RTT connection resumption: QUIC allows for 0-RTT (Zero Round-Trip Time) connection resumption, enabling
faster reconnections between clients and servers that have previously communicated. This can, however, pose a
risk of replay attacks if not properly implemented.

Improved privacy: QUIC's connection identifiers do not reveal user IP addresses, making it harder for
eavesdroppers to track users across different connections and improving privacy.

Resistance to replay attacks: QUIC has built-in mechanisms to counter replay attacks, but proper implementation
is essential to ensure the security of the protocol.

Connection migration: QUIC supports connection migration, allowing a client to change its IP address without
losing the connection. This can help maintain secure connections, even in mobile or unstable network
environments.

Forward error correction: QUIC uses forward error correction (FEC) to reduce the impact of packet loss, enhancing
reliability and security.

Reduced impact of head-of-line blocking: QUIC's multiplexed streams can help mitigate head-of-line blocking,
improving the performance and security of connections.

Key QUIC vs. TCP Improvements
Head-of-line (HOL) blocking is a problem that occurs in TCP when a lost or delayed packet prevents the
processing of subsequent packets in the same data stream, causing increased latency and reduced
performance. QUIC solves the head-of-line blocking problem more effectively than TCP by employing the
following techniques:

1.Independent streams: QUIC uses multiplexed streams over a single connection, where each stream is
independent of the others. This means that if a packet is lost or delayed in one stream, it does not affect the
other streams. In contrast, TCP treats all data within a connection as a single, ordered byte stream, which
means that any packet loss or delay can block the entire connection.

2.Stream-level error correction: QUIC handles error correction and retransmissions at the stream level, rather
than at the connection level, as in TCP. This enables QUIC to recover from packet losses in one stream
without affecting other streams, further reducing the impact of head-of-line blocking.

3.Faster packet retransmissions: QUIC can retransmit lost packets more quickly than TCP because it does not
rely on a single, global retransmission timer. Instead, QUIC uses per-packet timers and can quickly detect and
retransmit lost packets without waiting for a full round-trip time, as is typically the case with TCP.

4.Selective acknowledgments: QUIC uses selective acknowledgments (ACKs) to inform the sender about
received packets, as well as any gaps in the sequence of received packets. This allows the sender to quickly
identify lost packets and retransmit them, reducing the impact of head-of-line blocking.

QUIC Encryption Explained vs TCP
QUIC packet header encryption is a mechanism that protects certain parts of the QUIC packet header from being observed or modified by third
parties, such as middleboxes or eavesdroppers. This enhances privacy and security compared to traditional transport protocols like TCP, where
some header information remains exposed.

In QUIC, the packet payload and certain parts of the header are encrypted together using the same encryption keys. The payload is encrypted
using modern cryptographic algorithms like AES-GCM or ChaCha20-Poly1305, which also provide authentication.

Not all parts of the QUIC header are encrypted. The packet number, for example, remains in the clear. The reason is to allow for better handling of
packet loss and reordering, as the packet number helps identify which packets have been received and which ones are still missing. QUIC:

1.Encrypts the payload: The payload data (e.g., application data) is encrypted using a symmetric key negotiated during the QUIC handshake.

2.Protect specific header fields: QUIC protects certain header fields, such as the Key Phase, Spin Bit, and some reserved bits, using a technique
called "header protection." This is done by generating a header protection mask based on the packet encryption key and the unprotected header.

3.Apply the header protection mask: The header protection mask is XORed with the specific header fields that need to be protected. This process
encrypts these fields and prevents them from being observed or modified by third parties.

4.QUIC uses TLS for header encryption: The header protection mechanism is built into the QUIC protocol itself. As a result, there's no "second
encryption" layer for the header compared to the payload. The encryption keys for both payload and header protection are derived from the
same initial secret negotiated during the QUIC handshake.

5.QUIC uses per packet encryption vs. TCP Stream-based encryption: When TCP is combined with TLS, it provides stream-based encryption, which
means that the entire data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet
loss or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

6.TCP has Exposed headers: In, some header information remains exposed, which can potentially be exploited by attackers or used for network
analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

7.TCP does not natively support connection migration: If a user changes their network connection (e.g., switching from Wi-Fi to cellular data), the
existing TCP connection/s must be terminated, and a new connection needs to be established, causing additional latency and potential
disruptions.

QUIC vs. TCP Encryption
Per-packet encryption: QUIC encrypts every packet individually with packet numbers in the clear. This allows for better handling
of packet loss and reordering compared to TCP. QUIC uses modern cryptographic algorithms such as AES-GCM or ChaCha20-
Poly1305 for encryption and authentication.

Packet header protection: QUIC also protects packet headers from being observed or modified by third parties. This enhances
privacy and security while preventing potential attacks that could exploit exposed header information.

Connection migration: QUIC supports connection migration, which means that a connection can be transferred between IP
addresses without breaking the connection. This can be useful in cases of network changes or mobility (e.g., when a user
switches from Wi-Fi to cellular data). Per-packet encryption enables this feature, as packets can be independently decrypted and
processed.

TCP encryption (with TLS):

Protocol: TCP is built on top of IP and provides a reliable, ordered, and error-checked delivery of data between applications. TCP
is the foundation for many application-level protocols, including HTTP, HTTPS, and FTP.

Stream-based encryption: When TCP is combined with TLS, it provides stream-based encryption, which means that the entire
data stream is encrypted as a whole rather than on a per-packet basis. This can make it more challenging to handle packet loss
or reordering, as lost or out-of-order packets can cause the entire stream to stall until the missing packet is received.

Exposed headers: In TCP, some header information remains exposed, which can potentially be exploited by attackers or used for
network analysis by third parties. This can be a privacy and security concern compared to QUIC's header protection.

Connection migration limitations: TCP does not natively support connection migration. If a user changes their network
connection (e.g., switching from Wi-Fi to cellular data), the existing TCP connection must be terminated, and a new connection
needs to be established, causing additional latency and potential disruptions.

QUIC Transport Protocol
IETF rfc-9000 & related rfcs

Resources Connection & Live Streams

https://linkedin.com/in/billaderson

https://Cogent.Management/live

https://Cogent.Community

https://linkedin.com/in/billaderson
https://cogent.management/live
https://cogent.community/

Packetman007

Cogent … clear, collaborative, insightful
powerfully persuasive, balanced, weighty, inclusive

Topics Prof Assn’s Conferences SME’s Vendors
Content Videos LiveStream Collaboration
Root Cause Analysis Chat GPT Cybersecurity
QUIC Protocol SharkFest - WireShark Betty Dubois
ISSA / ISC2 Leadership Podcasts

	Slide 1: QUIC Protocol Overview for Enterprises With Packet Analysis
	Slide 2
	Slide 3
	Slide 4: SharkFest 2023
	Slide 5: QUIC Protocol Adoption
	Slide 6: Current Internet 1x QUIC 3x Faster
	Slide 7
	Slide 8
	Slide 9: QUIC Initial Connect – some headers exposed
	Slide 10: Why Middleboxes (Firewalls) Blind to QUIC?
	Slide 11
	Slide 12: Benchmark Results
	Slide 13
	Slide 14: 50 year old TCP’s Idiosyncrasies
	Slide 15: TCP Data Duplication Details
	Slide 16: Significant Data Duplication
	Slide 17: Data Duplication & App Processing
	Slide 18: TCP – Packet Loss – Poor Recovery
	Slide 19: HOP/TTL Incongruity “our own man in the middle”
	Slide 20: TCP – Session Performance
	Slide 21: NAT, PAT or Route Changes Impact on Sessions
	Slide 22: QUIC Decrypted
	Slide 23
	Slide 24
	Slide 25: How to identify existing QUIC Users
	Slide 26: UDP vs TCP vs QUIC Firewall
	Slide 27: What to do next?
	Slide 28
	Slide 29: Decrypting TLS & QUIC Headers
	Slide 30: QUIC Improvements over TCP
	Slide 31: 0-RTT Data Request Response Size
	Slide 32: QUIC Frame Concept
	Slide 33: Introduction to QUIC for Network and Security Technologists
	Slide 34: QUIC’s Top 5 Security Vulnerabilities
	Slide 35: QUIC: Top 10 Things to Know
	Slide 36: Key QUIC vs. TCP Improvements
	Slide 37: QUIC Encryption Explained vs TCP
	Slide 38: QUIC vs. TCP Encryption
	Slide 39
	Slide 40: Resources Connection & Live Streams
	Slide 41: Cogent … clear, collaborative, insightful powerfully persuasive, balanced, weighty, inclusive

